tf.io.deserialize_many_sparse
Stay organized with collections
Save and categorize content based on your preferences.
Deserialize and concatenate SparseTensors
from a serialized minibatch.
tf.io.deserialize_many_sparse(
serialized_sparse, dtype, rank=None, name=None
)
The input serialized_sparse
must be a string matrix of shape [N x 3]
where
N
is the minibatch size and the rows correspond to packed outputs of
serialize_sparse
. The ranks of the original SparseTensor
objects
must all match. When the final SparseTensor
is created, it has rank one
higher than the ranks of the incoming SparseTensor
objects (they have been
concatenated along a new row dimension).
The output SparseTensor
object's shape values for all dimensions but the
first are the max across the input SparseTensor
objects' shape values
for the corresponding dimensions. Its first shape value is N
, the minibatch
size.
The input SparseTensor
objects' indices are assumed ordered in
standard lexicographic order. If this is not the case, after this
step run sparse.reorder
to restore index ordering.
For example, if the serialized input is a [2, 3]
matrix representing two
original SparseTensor
objects:
index = [ 0]
[10]
[20]
values = [1, 2, 3]
shape = [50]
and
index = [ 2]
[10]
values = [4, 5]
shape = [30]
then the final deserialized SparseTensor
will be:
index = [0 0]
[0 10]
[0 20]
[1 2]
[1 10]
values = [1, 2, 3, 4, 5]
shape = [2 50]
Args |
serialized_sparse
|
2-D Tensor of type string of shape [N, 3] .
The serialized and packed SparseTensor objects.
|
dtype
|
The dtype of the serialized SparseTensor objects.
|
rank
|
(optional) Python int, the rank of the SparseTensor objects.
|
name
|
A name prefix for the returned tensors (optional)
|
Returns |
A SparseTensor representing the deserialized SparseTensor s,
concatenated along the SparseTensor s' first dimension.
All of the serialized SparseTensor s must have had the same rank and type.
|
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates. Some content is licensed under the numpy license.
Last updated 2024-04-26 UTC.
[[["Easy to understand","easyToUnderstand","thumb-up"],["Solved my problem","solvedMyProblem","thumb-up"],["Other","otherUp","thumb-up"]],[["Missing the information I need","missingTheInformationINeed","thumb-down"],["Too complicated / too many steps","tooComplicatedTooManySteps","thumb-down"],["Out of date","outOfDate","thumb-down"],["Samples / code issue","samplesCodeIssue","thumb-down"],["Other","otherDown","thumb-down"]],["Last updated 2024-04-26 UTC."],[],[],null,["# tf.io.deserialize_many_sparse\n\n\u003cbr /\u003e\n\n|--------------------------------------------------------------------------------------------------------------------------------|\n| [View source on GitHub](https://github.com/tensorflow/tensorflow/blob/v2.16.1/tensorflow/python/ops/sparse_ops.py#L2356-L2427) |\n\nDeserialize and concatenate `SparseTensors` from a serialized minibatch.\n\n#### View aliases\n\n\n**Compat aliases for migration**\n\nSee\n[Migration guide](https://www.tensorflow.org/guide/migrate) for\nmore details.\n\n[`tf.compat.v1.deserialize_many_sparse`](https://www.tensorflow.org/api_docs/python/tf/io/deserialize_many_sparse), [`tf.compat.v1.io.deserialize_many_sparse`](https://www.tensorflow.org/api_docs/python/tf/io/deserialize_many_sparse)\n\n\u003cbr /\u003e\n\n tf.io.deserialize_many_sparse(\n serialized_sparse, dtype, rank=None, name=None\n )\n\nThe input `serialized_sparse` must be a string matrix of shape `[N x 3]` where\n`N` is the minibatch size and the rows correspond to packed outputs of\n`serialize_sparse`. The ranks of the original `SparseTensor` objects\nmust all match. When the final `SparseTensor` is created, it has rank one\nhigher than the ranks of the incoming `SparseTensor` objects (they have been\nconcatenated along a new row dimension).\n\nThe output `SparseTensor` object's shape values for all dimensions but the\nfirst are the max across the input `SparseTensor` objects' shape values\nfor the corresponding dimensions. Its first shape value is `N`, the minibatch\nsize.\n\nThe input `SparseTensor` objects' indices are assumed ordered in\nstandard lexicographic order. If this is not the case, after this\nstep run [`sparse.reorder`](../../tf/sparse/reorder) to restore index ordering.\n\nFor example, if the serialized input is a `[2, 3]` matrix representing two\noriginal `SparseTensor` objects: \n\n index = [ 0]\n [10]\n [20]\n values = [1, 2, 3]\n shape = [50]\n\nand \n\n index = [ 2]\n [10]\n values = [4, 5]\n shape = [30]\n\nthen the final deserialized `SparseTensor` will be: \n\n index = [0 0]\n [0 10]\n [0 20]\n [1 2]\n [1 10]\n values = [1, 2, 3, 4, 5]\n shape = [2 50]\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ---- ||\n|---------------------|----------------------------------------------------------------------------------------------------|\n| `serialized_sparse` | 2-D `Tensor` of type `string` of shape `[N, 3]`. The serialized and packed `SparseTensor` objects. |\n| `dtype` | The `dtype` of the serialized `SparseTensor` objects. |\n| `rank` | (optional) Python int, the rank of the `SparseTensor` objects. |\n| `name` | A name prefix for the returned tensors (optional) |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Returns ------- ||\n|---|---|\n| A `SparseTensor` representing the deserialized `SparseTensor`s, concatenated along the `SparseTensor`s' first dimension. \u003cbr /\u003e All of the serialized `SparseTensor`s must have had the same rank and type. ||\n\n\u003cbr /\u003e"]]