Releases: Hawthorne001/llama.cpp
Releases · Hawthorne001/llama.cpp
b6408
CANN: Stream sync between devices for acl_graph (#15809) * CANN: Switch to stream synchronization Switch to stream synchronization because events are not effective. Co-authored-by: hipudding <huafengchun@gmail.com> * CANN: add Comments --------- Co-authored-by: hipudding <huafengchun@gmail.com>
b6407
vulkan: support im2col_3d (#15795)
b6403
ggml WebGPU: remove userdata from request adapter callback (#15527) * ggml WebGPU: remove userdata from request adapter callback This commit removes the `userdata` parameter from the WebGPU request adapter callback in `ggml-webgpu.cpp`. Instead, the lambda function captures the `webgpu_context` directly. The motivation for this change is to simplify the code and improve readability. * inline the callback lambda into the RequestAdapter call This commit removes the callback lambda variable and inlines it directly into the RequestAdapter call.
b6402
CUDA: faster tile FA (Pascal/AMD), headsize 256 (#15769)
b6401
kleidiai: generalize compute_forward_kv_cache to compute_forward_fp16…
b6397
ggml-cpu: drop support for nnpa intrinsics (#15821)
b6396
aLoRA Support (#15327) * feat: Add python-side constants and conversion for adapter.lora.invocation_string Branch: gabe-l-hart/alora-support Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Add c++ side constants for adapter.lora.invocation_string Branch: gabe-l-hart/alora-support Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Parse invocation string for adapters from GGUF Branch: gabe-l-hart/alora-support Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix(python): Update conversion to alora_invocation_tokens This is the preferred method in PEFT which is the source of ground truth https://github.com/huggingface/peft/pull/2609/files#diff-13380145401d203d5935c5189dd09879f990b81aa63e8e3aaff8ce9110333f0e Branch: gabe-l-hart/alora-support Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix(cpp): Update to alora_invocation_tokens on c++ side Branch: gabe-l-hart/alora-support Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Add C APIs to get alora invocation token array from lora Branch: gabe-l-hart/alora-support Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Initial implementation of alora cache logic in server This does not yet do the part to identify the invocation tokens and only apply the lora adapter afterwards, but it does seem to produce correct results if the invocation tokens are the beginning of the uncached input. Branch: gabe-l-hart/alora-support Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Identify alora invocation sequences This currently limits to a single enabled alora per slot. Multiple aloras with different invocation sequences would be possible, but it would require a more complex integration of the adapter toggling and is not really a well studied case for alora since it's unclear if one alora can reuse cache from previous prefill computed with a different alora. Branch: gabe-l-hart/alora-support Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Only reuse cache for tokens before the alora invocation start This is a bit of an edge case, but theoretically a user could try the same query with the alora disabled (just using the base model), then retry with the alora. The cached tokens from the first pass should be invalid. Branch: gabe-l-hart/alora-support Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Handle un-cached tokens that come before the alora activation The solution is to only fill up to the token before the invocation start in the batch if there are any tokens to be prefilled between those pulled from cache and the invocation start. When this is detected, the alora is temporarily disabled with a scale of 0.0, then immediately re-enabled after it has been initialized for the internal graph. Since the batch does not complete the prompt tokens, the remaining prompt tokens are handled in the next task, pulling all of the non-alora tokens from cache and proceeding with prefill for the alora tokens. Branch: gabe-l-hart/alora-support Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Use || instead of 'or' Too much python :facepalm: Branch: gabe-l-hart/alora-support Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Fix off-by-one for limiting cached tokens to before alora start This was the cause of the inconsistent results from the dummy test script with and without the turn that runs the prompt without the adapter before running it with the adapter. Branch: gabe-l-hart/alora-support Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Support backwards-compatibility for "invocation_string" in adapter_config.json While this has been replaced in the PEFT PR in favor of alora_invocation_tokens, the existing adapters in the ibm-granite org on HF use "invocation_string," so this will enable backwards compatibility and enable testing now (before PEFT PR changes have percolated everywhere). Branch: gabe-l-hart/alora-support Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Remove duplicate logging Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com> * feat: Report alora_invocation_string and alora_invocation_tokens from /lora-adapters Branch: gabe-l-hart/alora-support Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> --------- Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
b6378
ggml: add ops for WAN video model (cuda && cpu) (#15669) * add conv3d support * add ggml_pad_ext for cpu & cuda backend * cuda/cpu: add im2col_3d support * cuda: make im2col a little faster * fix cuda pad/scale/im2col3d * make im2col_3d faster * gguf: support loading tensors which n_dims > GGML_MAX_DIMS * fix cuda get_rows * avoid ggml_conv_3d conflict * correct GGML_OP_COUNT assertion * avoid build failure * avoid build failure on MacOS * cuda: remove unnecessary MIN define * fix cpu im2col_3d * adjust the code style * cuda: use simpler loop in get_rows * add test_im2col_3d to test-backend-ops * test-backend-ops.cpp: remove trailing whitespace * cpu: im2col_3d support non continuous src Co-authored-by: Jeff Bolz <jbolz@nvidia.com> * fix test_im2col_3d * remove unused variables * cuda: get_rows: dfloat2 -> float2 * add test_pad_ext to test-backend-ops.cpp * add gguf_init_from_file_ext impl * Revert "gguf: support loading tensors which n_dims > GGML_MAX_DIMS" This reverts commit d8377a0a37f314bd3713fe043b4333ad661610c1. * Revert "add gguf_init_from_file_ext impl" This reverts commit d9f1d13208c68ef83b3538201ac7f31614fb1994. * update ggml_backend_vk_device_supports_op * fix ggml_backend_vk_device_supports_op * update other backend supports op for ggml_pad_ext * metal/opencl/sycl/vulkan: fix GGML_OP_PAD check in supports_op --------- Co-authored-by: Jeff Bolz <jbolz@nvidia.com>
b6357
vulkan: fix shaders gen when no integer dot is available (#15740)
b6356
CANN: Resolve soft_max precision issue (#15730) Previously, the slope tensor was set to fp16 to improve efficiency. While this worked correctly in FA, it caused precision issues in soft_max. This change applies different data types for different operators to balance both accuracy and performance.