bevy_ui/ui_node.rs
1use crate::{FocusPolicy, UiRect, Val};
2use bevy_color::Color;
3use bevy_derive::{Deref, DerefMut};
4use bevy_ecs::{prelude::*, system::SystemParam};
5use bevy_math::{vec4, Rect, UVec2, Vec2, Vec4Swizzles};
6use bevy_reflect::prelude::*;
7use bevy_render::{
8 camera::{Camera, RenderTarget},
9 view::Visibility,
10 view::VisibilityClass,
11};
12use bevy_sprite::BorderRect;
13use bevy_transform::components::Transform;
14use bevy_utils::once;
15use bevy_window::{PrimaryWindow, WindowRef};
16use core::num::NonZero;
17use derive_more::derive::From;
18use smallvec::SmallVec;
19use thiserror::Error;
20use tracing::warn;
21
22/// Provides the computed size and layout properties of the node.
23///
24/// Fields in this struct are public but should not be modified under most circumstances.
25/// For example, in a scrollbar you may want to derive the handle's size from the proportion of
26/// scrollable content in-view. You can directly modify `ComputedNode` after layout to set the
27/// handle size without any delays.
28#[derive(Component, Debug, Copy, Clone, PartialEq, Reflect)]
29#[reflect(Component, Default, Debug, Clone)]
30pub struct ComputedNode {
31 /// The order of the node in the UI layout.
32 /// Nodes with a higher stack index are drawn on top of and receive interactions before nodes with lower stack indices.
33 ///
34 /// Automatically calculated in [`super::UiSystem::Stack`].
35 pub stack_index: u32,
36 /// The size of the node as width and height in physical pixels.
37 ///
38 /// Automatically calculated by [`super::layout::ui_layout_system`].
39 pub size: Vec2,
40 /// Size of this node's content.
41 ///
42 /// Automatically calculated by [`super::layout::ui_layout_system`].
43 pub content_size: Vec2,
44 /// The width of this node's outline.
45 /// If this value is `Auto`, negative or `0.` then no outline will be rendered.
46 /// Outline updates bypass change detection.
47 ///
48 /// Automatically calculated by [`super::layout::ui_layout_system`].
49 pub outline_width: f32,
50 /// The amount of space between the outline and the edge of the node.
51 /// Outline updates bypass change detection.
52 ///
53 /// Automatically calculated by [`super::layout::ui_layout_system`].
54 pub outline_offset: f32,
55 /// The unrounded size of the node as width and height in physical pixels.
56 ///
57 /// Automatically calculated by [`super::layout::ui_layout_system`].
58 pub unrounded_size: Vec2,
59 /// Resolved border values in physical pixels.
60 /// Border updates bypass change detection.
61 ///
62 /// Automatically calculated by [`super::layout::ui_layout_system`].
63 pub border: BorderRect,
64 /// Resolved border radius values in physical pixels.
65 /// Border radius updates bypass change detection.
66 ///
67 /// Automatically calculated by [`super::layout::ui_layout_system`].
68 pub border_radius: ResolvedBorderRadius,
69 /// Resolved padding values in physical pixels.
70 /// Padding updates bypass change detection.
71 ///
72 /// Automatically calculated by [`super::layout::ui_layout_system`].
73 pub padding: BorderRect,
74 /// Inverse scale factor for this Node.
75 /// Multiply physical coordinates by the inverse scale factor to give logical coordinates.
76 ///
77 /// Automatically calculated by [`super::layout::ui_layout_system`].
78 pub inverse_scale_factor: f32,
79}
80
81impl ComputedNode {
82 /// The calculated node size as width and height in physical pixels.
83 ///
84 /// Automatically calculated by [`super::layout::ui_layout_system`].
85 #[inline]
86 pub const fn size(&self) -> Vec2 {
87 self.size
88 }
89
90 /// The calculated node content size as width and height in physical pixels.
91 ///
92 /// Automatically calculated by [`super::layout::ui_layout_system`].
93 #[inline]
94 pub const fn content_size(&self) -> Vec2 {
95 self.content_size
96 }
97
98 /// Check if the node is empty.
99 /// A node is considered empty if it has a zero or negative extent along either of its axes.
100 #[inline]
101 pub const fn is_empty(&self) -> bool {
102 self.size.x <= 0. || self.size.y <= 0.
103 }
104
105 /// The order of the node in the UI layout.
106 /// Nodes with a higher stack index are drawn on top of and receive interactions before nodes with lower stack indices.
107 ///
108 /// Automatically calculated by [`super::layout::ui_layout_system`].
109 pub const fn stack_index(&self) -> u32 {
110 self.stack_index
111 }
112
113 /// The calculated node size as width and height in physical pixels before rounding.
114 ///
115 /// Automatically calculated by [`super::layout::ui_layout_system`].
116 #[inline]
117 pub const fn unrounded_size(&self) -> Vec2 {
118 self.unrounded_size
119 }
120
121 /// Returns the thickness of the UI node's outline in physical pixels.
122 /// If this value is negative or `0.` then no outline will be rendered.
123 ///
124 /// Automatically calculated by [`super::layout::ui_layout_system`].
125 #[inline]
126 pub const fn outline_width(&self) -> f32 {
127 self.outline_width
128 }
129
130 /// Returns the amount of space between the outline and the edge of the node in physical pixels.
131 ///
132 /// Automatically calculated by [`super::layout::ui_layout_system`].
133 #[inline]
134 pub const fn outline_offset(&self) -> f32 {
135 self.outline_offset
136 }
137
138 /// Returns the size of the node when including its outline.
139 ///
140 /// Automatically calculated by [`super::layout::ui_layout_system`].
141 #[inline]
142 pub const fn outlined_node_size(&self) -> Vec2 {
143 let offset = 2. * (self.outline_offset + self.outline_width);
144 Vec2::new(self.size.x + offset, self.size.y + offset)
145 }
146
147 /// Returns the border radius for each corner of the outline
148 /// An outline's border radius is derived from the node's border-radius
149 /// so that the outline wraps the border equally at all points.
150 ///
151 /// Automatically calculated by [`super::layout::ui_layout_system`].
152 #[inline]
153 pub const fn outline_radius(&self) -> ResolvedBorderRadius {
154 let outer_distance = self.outline_width + self.outline_offset;
155 const fn compute_radius(radius: f32, outer_distance: f32) -> f32 {
156 if radius > 0. {
157 radius + outer_distance
158 } else {
159 0.
160 }
161 }
162 ResolvedBorderRadius {
163 top_left: compute_radius(self.border_radius.top_left, outer_distance),
164 top_right: compute_radius(self.border_radius.top_right, outer_distance),
165 bottom_left: compute_radius(self.border_radius.bottom_left, outer_distance),
166 bottom_right: compute_radius(self.border_radius.bottom_right, outer_distance),
167 }
168 }
169
170 /// Returns the thickness of the node's border on each edge in physical pixels.
171 ///
172 /// Automatically calculated by [`super::layout::ui_layout_system`].
173 #[inline]
174 pub const fn border(&self) -> BorderRect {
175 self.border
176 }
177
178 /// Returns the border radius for each of the node's corners in physical pixels.
179 ///
180 /// Automatically calculated by [`super::layout::ui_layout_system`].
181 #[inline]
182 pub const fn border_radius(&self) -> ResolvedBorderRadius {
183 self.border_radius
184 }
185
186 /// Returns the inner border radius for each of the node's corners in physical pixels.
187 pub fn inner_radius(&self) -> ResolvedBorderRadius {
188 fn clamp_corner(r: f32, size: Vec2, offset: Vec2) -> f32 {
189 let s = 0.5 * size + offset;
190 let sm = s.x.min(s.y);
191 r.min(sm)
192 }
193 let b = vec4(
194 self.border.left,
195 self.border.top,
196 self.border.right,
197 self.border.bottom,
198 );
199 let s = self.size() - b.xy() - b.zw();
200 ResolvedBorderRadius {
201 top_left: clamp_corner(self.border_radius.top_left, s, b.xy()),
202 top_right: clamp_corner(self.border_radius.top_right, s, b.zy()),
203 bottom_left: clamp_corner(self.border_radius.bottom_right, s, b.zw()),
204 bottom_right: clamp_corner(self.border_radius.bottom_left, s, b.xw()),
205 }
206 }
207
208 /// Returns the thickness of the node's padding on each edge in physical pixels.
209 ///
210 /// Automatically calculated by [`super::layout::ui_layout_system`].
211 #[inline]
212 pub const fn padding(&self) -> BorderRect {
213 self.padding
214 }
215
216 /// Returns the combined inset on each edge including both padding and border thickness in physical pixels.
217 #[inline]
218 pub const fn content_inset(&self) -> BorderRect {
219 BorderRect {
220 left: self.border.left + self.padding.left,
221 right: self.border.right + self.padding.right,
222 top: self.border.top + self.padding.top,
223 bottom: self.border.bottom + self.padding.bottom,
224 }
225 }
226
227 /// Returns the inverse of the scale factor for this node.
228 /// To convert from physical coordinates to logical coordinates multiply by this value.
229 #[inline]
230 pub const fn inverse_scale_factor(&self) -> f32 {
231 self.inverse_scale_factor
232 }
233}
234
235impl ComputedNode {
236 pub const DEFAULT: Self = Self {
237 stack_index: 0,
238 size: Vec2::ZERO,
239 content_size: Vec2::ZERO,
240 outline_width: 0.,
241 outline_offset: 0.,
242 unrounded_size: Vec2::ZERO,
243 border_radius: ResolvedBorderRadius::ZERO,
244 border: BorderRect::ZERO,
245 padding: BorderRect::ZERO,
246 inverse_scale_factor: 1.,
247 };
248}
249
250impl Default for ComputedNode {
251 fn default() -> Self {
252 Self::DEFAULT
253 }
254}
255
256/// The scroll position of the node.
257///
258/// Updating the values of `ScrollPosition` will reposition the children of the node by the offset amount.
259/// `ScrollPosition` may be updated by the layout system when a layout change makes a previously valid `ScrollPosition` invalid.
260/// Changing this does nothing on a `Node` without setting at least one `OverflowAxis` to `OverflowAxis::Scroll`.
261#[derive(Component, Debug, Clone, Reflect)]
262#[reflect(Component, Default, Clone)]
263pub struct ScrollPosition {
264 /// How far across the node is scrolled, in logical pixels. (0 = not scrolled / scrolled to right)
265 pub offset_x: f32,
266 /// How far down the node is scrolled, in logical pixels. (0 = not scrolled / scrolled to top)
267 pub offset_y: f32,
268}
269
270impl ScrollPosition {
271 pub const DEFAULT: Self = Self {
272 offset_x: 0.0,
273 offset_y: 0.0,
274 };
275}
276
277impl Default for ScrollPosition {
278 fn default() -> Self {
279 Self::DEFAULT
280 }
281}
282
283impl From<&ScrollPosition> for Vec2 {
284 fn from(scroll_pos: &ScrollPosition) -> Self {
285 Vec2::new(scroll_pos.offset_x, scroll_pos.offset_y)
286 }
287}
288
289impl From<Vec2> for ScrollPosition {
290 fn from(vec: Vec2) -> Self {
291 ScrollPosition {
292 offset_x: vec.x,
293 offset_y: vec.y,
294 }
295 }
296}
297
298/// The base component for UI entities. It describes UI layout and style properties.
299///
300/// When defining new types of UI entities, require [`Node`] to make them behave like UI nodes.
301///
302/// Nodes can be laid out using either Flexbox or CSS Grid Layout.
303///
304/// See below for general learning resources and for documentation on the individual style properties.
305///
306/// ### Flexbox
307///
308/// - [MDN: Basic Concepts of Flexbox](https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Flexible_Box_Layout/Basic_Concepts_of_Flexbox)
309/// - [A Complete Guide To Flexbox](https://css-tricks.com/snippets/css/a-guide-to-flexbox/) by CSS Tricks. This is detailed guide with illustrations and comprehensive written explanation of the different Flexbox properties and how they work.
310/// - [Flexbox Froggy](https://flexboxfroggy.com/). An interactive tutorial/game that teaches the essential parts of Flexbox in a fun engaging way.
311///
312/// ### CSS Grid
313///
314/// - [MDN: Basic Concepts of Grid Layout](https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Grid_Layout/Basic_Concepts_of_Grid_Layout)
315/// - [A Complete Guide To CSS Grid](https://css-tricks.com/snippets/css/complete-guide-grid/) by CSS Tricks. This is detailed guide with illustrations and comprehensive written explanation of the different CSS Grid properties and how they work.
316/// - [CSS Grid Garden](https://cssgridgarden.com/). An interactive tutorial/game that teaches the essential parts of CSS Grid in a fun engaging way.
317///
318/// # See also
319///
320/// - [`RelativeCursorPosition`](crate::RelativeCursorPosition) to obtain the cursor position relative to this node
321/// - [`Interaction`](crate::Interaction) to obtain the interaction state of this node
322
323#[derive(Component, Clone, PartialEq, Debug, Reflect)]
324#[require(
325 ComputedNode,
326 ComputedNodeTarget,
327 BackgroundColor,
328 BorderColor,
329 BorderRadius,
330 FocusPolicy,
331 ScrollPosition,
332 Transform,
333 Visibility,
334 VisibilityClass,
335 ZIndex
336)]
337#[reflect(Component, Default, PartialEq, Debug, Clone)]
338#[cfg_attr(
339 feature = "serialize",
340 derive(serde::Serialize, serde::Deserialize),
341 reflect(Serialize, Deserialize)
342)]
343pub struct Node {
344 /// Which layout algorithm to use when laying out this node's contents:
345 /// - [`Display::Flex`]: Use the Flexbox layout algorithm
346 /// - [`Display::Grid`]: Use the CSS Grid layout algorithm
347 /// - [`Display::None`]: Hide this node and perform layout as if it does not exist.
348 ///
349 /// <https://developer.mozilla.org/en-US/docs/Web/CSS/display>
350 pub display: Display,
351
352 /// Which part of a Node's box length styles like width and height control
353 /// - [`BoxSizing::BorderBox`]: They refer to the "border box" size (size including padding and border)
354 /// - [`BoxSizing::ContentBox`]: They refer to the "content box" size (size excluding padding and border)
355 ///
356 /// `BoxSizing::BorderBox` is generally considered more intuitive and is the default in Bevy even though it is not on the web.
357 ///
358 /// See: <https://developer.mozilla.org/en-US/docs/Web/CSS/box-sizing>
359 pub box_sizing: BoxSizing,
360
361 /// Whether a node should be laid out in-flow with, or independently of its siblings:
362 /// - [`PositionType::Relative`]: Layout this node in-flow with other nodes using the usual (flexbox/grid) layout algorithm.
363 /// - [`PositionType::Absolute`]: Layout this node on top and independently of other nodes.
364 ///
365 /// <https://developer.mozilla.org/en-US/docs/Web/CSS/position>
366 pub position_type: PositionType,
367
368 /// Whether overflowing content should be displayed or clipped.
369 ///
370 /// <https://developer.mozilla.org/en-US/docs/Web/CSS/overflow>
371 pub overflow: Overflow,
372
373 /// How the bounds of clipped content should be determined
374 ///
375 /// <https://developer.mozilla.org/en-US/docs/Web/CSS/overflow-clip-margin>
376 pub overflow_clip_margin: OverflowClipMargin,
377
378 /// The horizontal position of the left edge of the node.
379 /// - For relatively positioned nodes, this is relative to the node's position as computed during regular layout.
380 /// - For absolutely positioned nodes, this is relative to the *parent* node's bounding box.
381 ///
382 /// <https://developer.mozilla.org/en-US/docs/Web/CSS/left>
383 pub left: Val,
384
385 /// The horizontal position of the right edge of the node.
386 /// - For relatively positioned nodes, this is relative to the node's position as computed during regular layout.
387 /// - For absolutely positioned nodes, this is relative to the *parent* node's bounding box.
388 ///
389 /// <https://developer.mozilla.org/en-US/docs/Web/CSS/right>
390 pub right: Val,
391
392 /// The vertical position of the top edge of the node.
393 /// - For relatively positioned nodes, this is relative to the node's position as computed during regular layout.
394 /// - For absolutely positioned nodes, this is relative to the *parent* node's bounding box.
395 ///
396 /// <https://developer.mozilla.org/en-US/docs/Web/CSS/top>
397 pub top: Val,
398
399 /// The vertical position of the bottom edge of the node.
400 /// - For relatively positioned nodes, this is relative to the node's position as computed during regular layout.
401 /// - For absolutely positioned nodes, this is relative to the *parent* node's bounding box.
402 ///
403 /// <https://developer.mozilla.org/en-US/docs/Web/CSS/bottom>
404 pub bottom: Val,
405
406 /// The ideal width of the node. `width` is used when it is within the bounds defined by `min_width` and `max_width`.
407 ///
408 /// <https://developer.mozilla.org/en-US/docs/Web/CSS/width>
409 pub width: Val,
410
411 /// The ideal height of the node. `height` is used when it is within the bounds defined by `min_height` and `max_height`.
412 ///
413 /// <https://developer.mozilla.org/en-US/docs/Web/CSS/height>
414 pub height: Val,
415
416 /// The minimum width of the node. `min_width` is used if it is greater than `width` and/or `max_width`.
417 ///
418 /// <https://developer.mozilla.org/en-US/docs/Web/CSS/min-width>
419 pub min_width: Val,
420
421 /// The minimum height of the node. `min_height` is used if it is greater than `height` and/or `max_height`.
422 ///
423 /// <https://developer.mozilla.org/en-US/docs/Web/CSS/min-height>
424 pub min_height: Val,
425
426 /// The maximum width of the node. `max_width` is used if it is within the bounds defined by `min_width` and `width`.
427 ///
428 /// <https://developer.mozilla.org/en-US/docs/Web/CSS/max-width>
429 pub max_width: Val,
430
431 /// The maximum height of the node. `max_height` is used if it is within the bounds defined by `min_height` and `height`.
432 ///
433 /// <https://developer.mozilla.org/en-US/docs/Web/CSS/max-height>
434 pub max_height: Val,
435
436 /// The aspect ratio of the node (defined as `width / height`)
437 ///
438 /// <https://developer.mozilla.org/en-US/docs/Web/CSS/aspect-ratio>
439 pub aspect_ratio: Option<f32>,
440
441 /// Used to control how each individual item is aligned by default within the space they're given.
442 /// - For Flexbox containers, sets default cross axis alignment of the child items.
443 /// - For CSS Grid containers, controls block (vertical) axis alignment of children of this grid container within their grid areas.
444 ///
445 /// This value is overridden if [`AlignSelf`] on the child node is set.
446 ///
447 /// <https://developer.mozilla.org/en-US/docs/Web/CSS/align-items>
448 pub align_items: AlignItems,
449
450 /// Used to control how each individual item is aligned by default within the space they're given.
451 /// - For Flexbox containers, this property has no effect. See `justify_content` for main axis alignment of flex items.
452 /// - For CSS Grid containers, sets default inline (horizontal) axis alignment of child items within their grid areas.
453 ///
454 /// This value is overridden if [`JustifySelf`] on the child node is set.
455 ///
456 /// <https://developer.mozilla.org/en-US/docs/Web/CSS/justify-items>
457 pub justify_items: JustifyItems,
458
459 /// Used to control how the specified item is aligned within the space it's given.
460 /// - For Flexbox items, controls cross axis alignment of the item.
461 /// - For CSS Grid items, controls block (vertical) axis alignment of a grid item within its grid area.
462 ///
463 /// If set to `Auto`, alignment is inherited from the value of [`AlignItems`] set on the parent node.
464 ///
465 /// <https://developer.mozilla.org/en-US/docs/Web/CSS/align-self>
466 pub align_self: AlignSelf,
467
468 /// Used to control how the specified item is aligned within the space it's given.
469 /// - For Flexbox items, this property has no effect. See `justify_content` for main axis alignment of flex items.
470 /// - For CSS Grid items, controls inline (horizontal) axis alignment of a grid item within its grid area.
471 ///
472 /// If set to `Auto`, alignment is inherited from the value of [`JustifyItems`] set on the parent node.
473 ///
474 /// <https://developer.mozilla.org/en-US/docs/Web/CSS/justify-self>
475 pub justify_self: JustifySelf,
476
477 /// Used to control how items are distributed.
478 /// - For Flexbox containers, controls alignment of lines if `flex_wrap` is set to [`FlexWrap::Wrap`] and there are multiple lines of items.
479 /// - For CSS Grid containers, controls alignment of grid rows.
480 ///
481 /// <https://developer.mozilla.org/en-US/docs/Web/CSS/align-content>
482 pub align_content: AlignContent,
483
484 /// Used to control how items are distributed.
485 /// - For Flexbox containers, controls alignment of items in the main axis.
486 /// - For CSS Grid containers, controls alignment of grid columns.
487 ///
488 /// <https://developer.mozilla.org/en-US/docs/Web/CSS/justify-content>
489 pub justify_content: JustifyContent,
490
491 /// The amount of space around a node outside its border.
492 ///
493 /// If a percentage value is used, the percentage is calculated based on the width of the parent node.
494 ///
495 /// # Example
496 /// ```
497 /// # use bevy_ui::{Node, UiRect, Val};
498 /// let node = Node {
499 /// margin: UiRect {
500 /// left: Val::Percent(10.),
501 /// right: Val::Percent(10.),
502 /// top: Val::Percent(15.),
503 /// bottom: Val::Percent(15.)
504 /// },
505 /// ..Default::default()
506 /// };
507 /// ```
508 /// A node with this style and a parent with dimensions of 100px by 300px will have calculated margins of 10px on both left and right edges, and 15px on both top and bottom edges.
509 ///
510 /// <https://developer.mozilla.org/en-US/docs/Web/CSS/margin>
511 pub margin: UiRect,
512
513 /// The amount of space between the edges of a node and its contents.
514 ///
515 /// If a percentage value is used, the percentage is calculated based on the width of the parent node.
516 ///
517 /// # Example
518 /// ```
519 /// # use bevy_ui::{Node, UiRect, Val};
520 /// let node = Node {
521 /// padding: UiRect {
522 /// left: Val::Percent(1.),
523 /// right: Val::Percent(2.),
524 /// top: Val::Percent(3.),
525 /// bottom: Val::Percent(4.)
526 /// },
527 /// ..Default::default()
528 /// };
529 /// ```
530 /// A node with this style and a parent with dimensions of 300px by 100px will have calculated padding of 3px on the left, 6px on the right, 9px on the top and 12px on the bottom.
531 ///
532 /// <https://developer.mozilla.org/en-US/docs/Web/CSS/padding>
533 pub padding: UiRect,
534
535 /// The amount of space between the margins of a node and its padding.
536 ///
537 /// If a percentage value is used, the percentage is calculated based on the width of the parent node.
538 ///
539 /// The size of the node will be expanded if there are constraints that prevent the layout algorithm from placing the border within the existing node boundary.
540 ///
541 /// <https://developer.mozilla.org/en-US/docs/Web/CSS/border-width>
542 pub border: UiRect,
543
544 /// Whether a Flexbox container should be a row or a column. This property has no effect on Grid nodes.
545 ///
546 /// <https://developer.mozilla.org/en-US/docs/Web/CSS/flex-direction>
547 pub flex_direction: FlexDirection,
548
549 /// Whether a Flexbox container should wrap its contents onto multiple lines if they overflow. This property has no effect on Grid nodes.
550 ///
551 /// <https://developer.mozilla.org/en-US/docs/Web/CSS/flex-wrap>
552 pub flex_wrap: FlexWrap,
553
554 /// Defines how much a flexbox item should grow if there's space available. Defaults to 0 (don't grow at all).
555 ///
556 /// <https://developer.mozilla.org/en-US/docs/Web/CSS/flex-grow>
557 pub flex_grow: f32,
558
559 /// Defines how much a flexbox item should shrink if there's not enough space available. Defaults to 1.
560 ///
561 /// <https://developer.mozilla.org/en-US/docs/Web/CSS/flex-shrink>
562 pub flex_shrink: f32,
563
564 /// The initial length of a flexbox in the main axis, before flex growing/shrinking properties are applied.
565 ///
566 /// `flex_basis` overrides `width` (if the main axis is horizontal) or `height` (if the main axis is vertical) when both are set, but it obeys the constraints defined by `min_width`/`min_height` and `max_width`/`max_height`.
567 ///
568 /// <https://developer.mozilla.org/en-US/docs/Web/CSS/flex-basis>
569 pub flex_basis: Val,
570
571 /// The size of the gutters between items in a vertical flexbox layout or between rows in a grid layout.
572 ///
573 /// Note: Values of `Val::Auto` are not valid and are treated as zero.
574 ///
575 /// <https://developer.mozilla.org/en-US/docs/Web/CSS/row-gap>
576 pub row_gap: Val,
577
578 /// The size of the gutters between items in a horizontal flexbox layout or between column in a grid layout.
579 ///
580 /// Note: Values of `Val::Auto` are not valid and are treated as zero.
581 ///
582 /// <https://developer.mozilla.org/en-US/docs/Web/CSS/column-gap>
583 pub column_gap: Val,
584
585 /// Controls whether automatically placed grid items are placed row-wise or column-wise as well as whether the sparse or dense packing algorithm is used.
586 /// Only affects Grid layouts.
587 ///
588 /// <https://developer.mozilla.org/en-US/docs/Web/CSS/grid-auto-flow>
589 pub grid_auto_flow: GridAutoFlow,
590
591 /// Defines the number of rows a grid has and the sizes of those rows. If grid items are given explicit placements then more rows may
592 /// be implicitly generated by items that are placed out of bounds. The sizes of those rows are controlled by `grid_auto_rows` property.
593 ///
594 /// <https://developer.mozilla.org/en-US/docs/Web/CSS/grid-template-rows>
595 pub grid_template_rows: Vec<RepeatedGridTrack>,
596
597 /// Defines the number of columns a grid has and the sizes of those columns. If grid items are given explicit placements then more columns may
598 /// be implicitly generated by items that are placed out of bounds. The sizes of those columns are controlled by `grid_auto_columns` property.
599 ///
600 /// <https://developer.mozilla.org/en-US/docs/Web/CSS/grid-template-columns>
601 pub grid_template_columns: Vec<RepeatedGridTrack>,
602
603 /// Defines the size of implicitly created rows. Rows are created implicitly when grid items are given explicit placements that are out of bounds
604 /// of the rows explicitly created using `grid_template_rows`.
605 ///
606 /// <https://developer.mozilla.org/en-US/docs/Web/CSS/grid-auto-rows>
607 pub grid_auto_rows: Vec<GridTrack>,
608 /// Defines the size of implicitly created columns. Columns are created implicitly when grid items are given explicit placements that are out of bounds
609 /// of the columns explicitly created using `grid_template_columns`.
610 ///
611 /// <https://developer.mozilla.org/en-US/docs/Web/CSS/grid-auto-columns>
612 pub grid_auto_columns: Vec<GridTrack>,
613
614 /// The row in which a grid item starts and how many rows it spans.
615 ///
616 /// <https://developer.mozilla.org/en-US/docs/Web/CSS/grid-row>
617 pub grid_row: GridPlacement,
618
619 /// The column in which a grid item starts and how many columns it spans.
620 ///
621 /// <https://developer.mozilla.org/en-US/docs/Web/CSS/grid-column>
622 pub grid_column: GridPlacement,
623}
624
625impl Node {
626 pub const DEFAULT: Self = Self {
627 display: Display::DEFAULT,
628 box_sizing: BoxSizing::DEFAULT,
629 position_type: PositionType::DEFAULT,
630 left: Val::Auto,
631 right: Val::Auto,
632 top: Val::Auto,
633 bottom: Val::Auto,
634 flex_direction: FlexDirection::DEFAULT,
635 flex_wrap: FlexWrap::DEFAULT,
636 align_items: AlignItems::DEFAULT,
637 justify_items: JustifyItems::DEFAULT,
638 align_self: AlignSelf::DEFAULT,
639 justify_self: JustifySelf::DEFAULT,
640 align_content: AlignContent::DEFAULT,
641 justify_content: JustifyContent::DEFAULT,
642 margin: UiRect::DEFAULT,
643 padding: UiRect::DEFAULT,
644 border: UiRect::DEFAULT,
645 flex_grow: 0.0,
646 flex_shrink: 1.0,
647 flex_basis: Val::Auto,
648 width: Val::Auto,
649 height: Val::Auto,
650 min_width: Val::Auto,
651 min_height: Val::Auto,
652 max_width: Val::Auto,
653 max_height: Val::Auto,
654 aspect_ratio: None,
655 overflow: Overflow::DEFAULT,
656 overflow_clip_margin: OverflowClipMargin::DEFAULT,
657 row_gap: Val::ZERO,
658 column_gap: Val::ZERO,
659 grid_auto_flow: GridAutoFlow::DEFAULT,
660 grid_template_rows: Vec::new(),
661 grid_template_columns: Vec::new(),
662 grid_auto_rows: Vec::new(),
663 grid_auto_columns: Vec::new(),
664 grid_column: GridPlacement::DEFAULT,
665 grid_row: GridPlacement::DEFAULT,
666 };
667}
668
669impl Default for Node {
670 fn default() -> Self {
671 Self::DEFAULT
672 }
673}
674
675/// Used to control how each individual item is aligned by default within the space they're given.
676/// - For Flexbox containers, sets default cross axis alignment of the child items.
677/// - For CSS Grid containers, controls block (vertical) axis alignment of children of this grid container within their grid areas.
678///
679/// <https://developer.mozilla.org/en-US/docs/Web/CSS/align-items>
680#[derive(Copy, Clone, PartialEq, Eq, Debug, Reflect)]
681#[reflect(Default, PartialEq, Clone)]
682#[cfg_attr(
683 feature = "serialize",
684 derive(serde::Serialize, serde::Deserialize),
685 reflect(Serialize, Deserialize)
686)]
687pub enum AlignItems {
688 /// The items are packed in their default position as if no alignment was applied.
689 Default,
690 /// The items are packed towards the start of the axis.
691 Start,
692 /// The items are packed towards the end of the axis.
693 End,
694 /// The items are packed towards the start of the axis, unless the flex direction is reversed;
695 /// then they are packed towards the end of the axis.
696 FlexStart,
697 /// The items are packed towards the end of the axis, unless the flex direction is reversed;
698 /// then they are packed towards the start of the axis.
699 FlexEnd,
700 /// The items are packed along the center of the axis.
701 Center,
702 /// The items are packed such that their baselines align.
703 Baseline,
704 /// The items are stretched to fill the space they're given.
705 Stretch,
706}
707
708impl AlignItems {
709 pub const DEFAULT: Self = Self::Default;
710}
711
712impl Default for AlignItems {
713 fn default() -> Self {
714 Self::DEFAULT
715 }
716}
717
718/// Used to control how each individual item is aligned by default within the space they're given.
719/// - For Flexbox containers, this property has no effect. See `justify_content` for main axis alignment of flex items.
720/// - For CSS Grid containers, sets default inline (horizontal) axis alignment of child items within their grid areas.
721///
722/// <https://developer.mozilla.org/en-US/docs/Web/CSS/justify-items>
723#[derive(Copy, Clone, PartialEq, Eq, Debug, Reflect)]
724#[reflect(Default, PartialEq, Clone)]
725#[cfg_attr(
726 feature = "serialize",
727 derive(serde::Serialize, serde::Deserialize),
728 reflect(Serialize, Deserialize)
729)]
730pub enum JustifyItems {
731 /// The items are packed in their default position as if no alignment was applied.
732 Default,
733 /// The items are packed towards the start of the axis.
734 Start,
735 /// The items are packed towards the end of the axis.
736 End,
737 /// The items are packed along the center of the axis
738 Center,
739 /// The items are packed such that their baselines align.
740 Baseline,
741 /// The items are stretched to fill the space they're given.
742 Stretch,
743}
744
745impl JustifyItems {
746 pub const DEFAULT: Self = Self::Default;
747}
748
749impl Default for JustifyItems {
750 fn default() -> Self {
751 Self::DEFAULT
752 }
753}
754
755/// Used to control how the specified item is aligned within the space it's given.
756/// - For Flexbox items, controls cross axis alignment of the item.
757/// - For CSS Grid items, controls block (vertical) axis alignment of a grid item within its grid area.
758///
759/// <https://developer.mozilla.org/en-US/docs/Web/CSS/align-self>
760#[derive(Copy, Clone, PartialEq, Eq, Debug, Reflect)]
761#[reflect(Default, PartialEq, Clone)]
762#[cfg_attr(
763 feature = "serialize",
764 derive(serde::Serialize, serde::Deserialize),
765 reflect(Serialize, Deserialize)
766)]
767pub enum AlignSelf {
768 /// Use the parent node's [`AlignItems`] value to determine how this item should be aligned.
769 Auto,
770 /// This item will be aligned with the start of the axis.
771 Start,
772 /// This item will be aligned with the end of the axis.
773 End,
774 /// This item will be aligned with the start of the axis, unless the flex direction is reversed;
775 /// then it will be aligned with the end of the axis.
776 FlexStart,
777 /// This item will be aligned with the end of the axis, unless the flex direction is reversed;
778 /// then it will be aligned with the start of the axis.
779 FlexEnd,
780 /// This item will be aligned along the center of the axis.
781 Center,
782 /// This item will be aligned at the baseline.
783 Baseline,
784 /// This item will be stretched to fill the container.
785 Stretch,
786}
787
788impl AlignSelf {
789 pub const DEFAULT: Self = Self::Auto;
790}
791
792impl Default for AlignSelf {
793 fn default() -> Self {
794 Self::DEFAULT
795 }
796}
797
798/// Used to control how the specified item is aligned within the space it's given.
799/// - For Flexbox items, this property has no effect. See `justify_content` for main axis alignment of flex items.
800/// - For CSS Grid items, controls inline (horizontal) axis alignment of a grid item within its grid area.
801///
802/// <https://developer.mozilla.org/en-US/docs/Web/CSS/justify-self>
803#[derive(Copy, Clone, PartialEq, Eq, Debug, Reflect)]
804#[reflect(Default, PartialEq, Clone)]
805#[cfg_attr(
806 feature = "serialize",
807 derive(serde::Serialize, serde::Deserialize),
808 reflect(Serialize, Deserialize)
809)]
810pub enum JustifySelf {
811 /// Use the parent node's [`JustifyItems`] value to determine how this item should be aligned.
812 Auto,
813 /// This item will be aligned with the start of the axis.
814 Start,
815 /// This item will be aligned with the end of the axis.
816 End,
817 /// This item will be aligned along the center of the axis.
818 Center,
819 /// This item will be aligned at the baseline.
820 Baseline,
821 /// This item will be stretched to fill the space it's given.
822 Stretch,
823}
824
825impl JustifySelf {
826 pub const DEFAULT: Self = Self::Auto;
827}
828
829impl Default for JustifySelf {
830 fn default() -> Self {
831 Self::DEFAULT
832 }
833}
834
835/// Used to control how items are distributed.
836/// - For Flexbox containers, controls alignment of lines if `flex_wrap` is set to [`FlexWrap::Wrap`] and there are multiple lines of items.
837/// - For CSS Grid containers, controls alignment of grid rows.
838///
839/// <https://developer.mozilla.org/en-US/docs/Web/CSS/align-content>
840#[derive(Copy, Clone, PartialEq, Eq, Debug, Reflect)]
841#[reflect(Default, PartialEq, Clone)]
842#[cfg_attr(
843 feature = "serialize",
844 derive(serde::Serialize, serde::Deserialize),
845 reflect(Serialize, Deserialize)
846)]
847pub enum AlignContent {
848 /// The items are packed in their default position as if no alignment was applied.
849 Default,
850 /// The items are packed towards the start of the axis.
851 Start,
852 /// The items are packed towards the end of the axis.
853 End,
854 /// The items are packed towards the start of the axis, unless the flex direction is reversed;
855 /// then the items are packed towards the end of the axis.
856 FlexStart,
857 /// The items are packed towards the end of the axis, unless the flex direction is reversed;
858 /// then the items are packed towards the start of the axis.
859 FlexEnd,
860 /// The items are packed along the center of the axis.
861 Center,
862 /// The items are stretched to fill the container along the axis.
863 Stretch,
864 /// The items are distributed such that the gap between any two items is equal.
865 SpaceBetween,
866 /// The items are distributed such that the gap between and around any two items is equal.
867 SpaceEvenly,
868 /// The items are distributed such that the gap between and around any two items is equal, with half-size gaps on either end.
869 SpaceAround,
870}
871
872impl AlignContent {
873 pub const DEFAULT: Self = Self::Default;
874}
875
876impl Default for AlignContent {
877 fn default() -> Self {
878 Self::DEFAULT
879 }
880}
881
882/// Used to control how items are distributed.
883/// - For Flexbox containers, controls alignment of items in the main axis.
884/// - For CSS Grid containers, controls alignment of grid columns.
885///
886/// <https://developer.mozilla.org/en-US/docs/Web/CSS/justify-content>
887#[derive(Copy, Clone, PartialEq, Eq, Debug, Reflect)]
888#[reflect(Default, PartialEq, Clone)]
889#[cfg_attr(
890 feature = "serialize",
891 derive(serde::Serialize, serde::Deserialize),
892 reflect(Serialize, Deserialize)
893)]
894pub enum JustifyContent {
895 /// The items are packed in their default position as if no alignment was applied.
896 Default,
897 /// The items are packed towards the start of the axis.
898 Start,
899 /// The items are packed towards the end of the axis.
900 End,
901 /// The items are packed towards the start of the axis, unless the flex direction is reversed;
902 /// then the items are packed towards the end of the axis.
903 FlexStart,
904 /// The items are packed towards the end of the axis, unless the flex direction is reversed;
905 /// then the items are packed towards the start of the axis.
906 FlexEnd,
907 /// The items are packed along the center of the axis.
908 Center,
909 /// The items are stretched to fill the container along the axis.
910 Stretch,
911 /// The items are distributed such that the gap between any two items is equal.
912 SpaceBetween,
913 /// The items are distributed such that the gap between and around any two items is equal.
914 SpaceEvenly,
915 /// The items are distributed such that the gap between and around any two items is equal, with half-size gaps on either end.
916 SpaceAround,
917}
918
919impl JustifyContent {
920 pub const DEFAULT: Self = Self::Default;
921}
922
923impl Default for JustifyContent {
924 fn default() -> Self {
925 Self::DEFAULT
926 }
927}
928
929/// Defines the layout model used by this node.
930///
931/// Part of the [`Node`] component.
932#[derive(Copy, Clone, PartialEq, Eq, Debug, Reflect)]
933#[reflect(Default, PartialEq, Clone)]
934#[cfg_attr(
935 feature = "serialize",
936 derive(serde::Serialize, serde::Deserialize),
937 reflect(Serialize, Deserialize)
938)]
939pub enum Display {
940 /// Use Flexbox layout model to determine the position of this [`Node`]'s children.
941 Flex,
942 /// Use CSS Grid layout model to determine the position of this [`Node`]'s children.
943 Grid,
944 /// Use CSS Block layout model to determine the position of this [`Node`]'s children.
945 Block,
946 /// Use no layout, don't render this node and its children.
947 ///
948 /// If you want to hide a node and its children,
949 /// but keep its layout in place, set its [`Visibility`] component instead.
950 None,
951}
952
953impl Display {
954 pub const DEFAULT: Self = Self::Flex;
955}
956
957impl Default for Display {
958 fn default() -> Self {
959 Self::DEFAULT
960 }
961}
962
963/// Which part of a Node's box length styles like width and height control
964///
965/// See: <https://developer.mozilla.org/en-US/docs/Web/CSS/box-sizing>
966#[derive(Copy, Clone, PartialEq, Eq, Debug, Reflect)]
967#[reflect(Default, PartialEq, Clone)]
968#[cfg_attr(
969 feature = "serialize",
970 derive(serde::Serialize, serde::Deserialize),
971 reflect(Serialize, Deserialize)
972)]
973pub enum BoxSizing {
974 /// Length styles like width and height refer to the "border box" size (size including padding and border)
975 BorderBox,
976 /// Length styles like width and height refer to the "content box" size (size excluding padding and border)
977 ContentBox,
978}
979impl BoxSizing {
980 pub const DEFAULT: Self = Self::BorderBox;
981}
982impl Default for BoxSizing {
983 fn default() -> Self {
984 Self::DEFAULT
985 }
986}
987
988/// Defines how flexbox items are ordered within a flexbox
989#[derive(Copy, Clone, PartialEq, Eq, Debug, Reflect)]
990#[reflect(Default, PartialEq, Clone)]
991#[cfg_attr(
992 feature = "serialize",
993 derive(serde::Serialize, serde::Deserialize),
994 reflect(Serialize, Deserialize)
995)]
996pub enum FlexDirection {
997 /// Same way as text direction along the main axis.
998 Row,
999 /// Flex from top to bottom.
1000 Column,
1001 /// Opposite way as text direction along the main axis.
1002 RowReverse,
1003 /// Flex from bottom to top.
1004 ColumnReverse,
1005}
1006
1007impl FlexDirection {
1008 pub const DEFAULT: Self = Self::Row;
1009}
1010
1011impl Default for FlexDirection {
1012 fn default() -> Self {
1013 Self::DEFAULT
1014 }
1015}
1016
1017/// Whether to show or hide overflowing items
1018#[derive(Copy, Clone, PartialEq, Eq, Debug, Reflect)]
1019#[reflect(Default, PartialEq, Clone)]
1020#[cfg_attr(
1021 feature = "serialize",
1022 derive(serde::Serialize, serde::Deserialize),
1023 reflect(Serialize, Deserialize)
1024)]
1025pub struct Overflow {
1026 /// Whether to show or clip overflowing items on the x axis
1027 pub x: OverflowAxis,
1028 /// Whether to show or clip overflowing items on the y axis
1029 pub y: OverflowAxis,
1030}
1031
1032impl Overflow {
1033 pub const DEFAULT: Self = Self {
1034 x: OverflowAxis::DEFAULT,
1035 y: OverflowAxis::DEFAULT,
1036 };
1037
1038 /// Show overflowing items on both axes
1039 pub const fn visible() -> Self {
1040 Self {
1041 x: OverflowAxis::Visible,
1042 y: OverflowAxis::Visible,
1043 }
1044 }
1045
1046 /// Clip overflowing items on both axes
1047 pub const fn clip() -> Self {
1048 Self {
1049 x: OverflowAxis::Clip,
1050 y: OverflowAxis::Clip,
1051 }
1052 }
1053
1054 /// Clip overflowing items on the x axis
1055 pub const fn clip_x() -> Self {
1056 Self {
1057 x: OverflowAxis::Clip,
1058 y: OverflowAxis::Visible,
1059 }
1060 }
1061
1062 /// Clip overflowing items on the y axis
1063 pub const fn clip_y() -> Self {
1064 Self {
1065 x: OverflowAxis::Visible,
1066 y: OverflowAxis::Clip,
1067 }
1068 }
1069
1070 /// Hide overflowing items on both axes by influencing layout and then clipping
1071 pub const fn hidden() -> Self {
1072 Self {
1073 x: OverflowAxis::Hidden,
1074 y: OverflowAxis::Hidden,
1075 }
1076 }
1077
1078 /// Hide overflowing items on the x axis by influencing layout and then clipping
1079 pub const fn hidden_x() -> Self {
1080 Self {
1081 x: OverflowAxis::Hidden,
1082 y: OverflowAxis::Visible,
1083 }
1084 }
1085
1086 /// Hide overflowing items on the y axis by influencing layout and then clipping
1087 pub const fn hidden_y() -> Self {
1088 Self {
1089 x: OverflowAxis::Visible,
1090 y: OverflowAxis::Hidden,
1091 }
1092 }
1093
1094 /// Overflow is visible on both axes
1095 pub const fn is_visible(&self) -> bool {
1096 self.x.is_visible() && self.y.is_visible()
1097 }
1098
1099 pub const fn scroll() -> Self {
1100 Self {
1101 x: OverflowAxis::Scroll,
1102 y: OverflowAxis::Scroll,
1103 }
1104 }
1105
1106 /// Scroll overflowing items on the x axis
1107 pub const fn scroll_x() -> Self {
1108 Self {
1109 x: OverflowAxis::Scroll,
1110 y: OverflowAxis::Visible,
1111 }
1112 }
1113
1114 /// Scroll overflowing items on the y axis
1115 pub const fn scroll_y() -> Self {
1116 Self {
1117 x: OverflowAxis::Visible,
1118 y: OverflowAxis::Scroll,
1119 }
1120 }
1121}
1122
1123impl Default for Overflow {
1124 fn default() -> Self {
1125 Self::DEFAULT
1126 }
1127}
1128
1129/// Whether to show or hide overflowing items
1130#[derive(Copy, Clone, PartialEq, Eq, Debug, Reflect)]
1131#[reflect(Default, PartialEq, Clone)]
1132#[cfg_attr(
1133 feature = "serialize",
1134 derive(serde::Serialize, serde::Deserialize),
1135 reflect(Serialize, Deserialize)
1136)]
1137pub enum OverflowAxis {
1138 /// Show overflowing items.
1139 Visible,
1140 /// Hide overflowing items by clipping.
1141 Clip,
1142 /// Hide overflowing items by influencing layout and then clipping.
1143 Hidden,
1144 /// Scroll overflowing items.
1145 Scroll,
1146}
1147
1148impl OverflowAxis {
1149 pub const DEFAULT: Self = Self::Visible;
1150
1151 /// Overflow is visible on this axis
1152 pub const fn is_visible(&self) -> bool {
1153 matches!(self, Self::Visible)
1154 }
1155}
1156
1157impl Default for OverflowAxis {
1158 fn default() -> Self {
1159 Self::DEFAULT
1160 }
1161}
1162
1163/// The bounds of the visible area when a UI node is clipped.
1164#[derive(Default, Copy, Clone, PartialEq, Debug, Reflect)]
1165#[reflect(Default, PartialEq, Clone)]
1166#[cfg_attr(
1167 feature = "serialize",
1168 derive(serde::Serialize, serde::Deserialize),
1169 reflect(Serialize, Deserialize)
1170)]
1171pub struct OverflowClipMargin {
1172 /// Visible unclipped area
1173 pub visual_box: OverflowClipBox,
1174 /// Width of the margin on each edge of the visual box in logical pixels.
1175 /// The width of the margin will be zero if a negative value is set.
1176 pub margin: f32,
1177}
1178
1179impl OverflowClipMargin {
1180 pub const DEFAULT: Self = Self {
1181 visual_box: OverflowClipBox::ContentBox,
1182 margin: 0.,
1183 };
1184
1185 /// Clip any content that overflows outside the content box
1186 pub const fn content_box() -> Self {
1187 Self {
1188 visual_box: OverflowClipBox::ContentBox,
1189 ..Self::DEFAULT
1190 }
1191 }
1192
1193 /// Clip any content that overflows outside the padding box
1194 pub const fn padding_box() -> Self {
1195 Self {
1196 visual_box: OverflowClipBox::PaddingBox,
1197 ..Self::DEFAULT
1198 }
1199 }
1200
1201 /// Clip any content that overflows outside the border box
1202 pub const fn border_box() -> Self {
1203 Self {
1204 visual_box: OverflowClipBox::BorderBox,
1205 ..Self::DEFAULT
1206 }
1207 }
1208
1209 /// Add a margin on each edge of the visual box in logical pixels.
1210 /// The width of the margin will be zero if a negative value is set.
1211 pub const fn with_margin(mut self, margin: f32) -> Self {
1212 self.margin = margin;
1213 self
1214 }
1215}
1216
1217/// Used to determine the bounds of the visible area when a UI node is clipped.
1218#[derive(Default, Copy, Clone, PartialEq, Eq, Debug, Reflect)]
1219#[reflect(Default, PartialEq, Clone)]
1220#[cfg_attr(
1221 feature = "serialize",
1222 derive(serde::Serialize, serde::Deserialize),
1223 reflect(Serialize, Deserialize)
1224)]
1225pub enum OverflowClipBox {
1226 /// Clip any content that overflows outside the content box
1227 #[default]
1228 ContentBox,
1229 /// Clip any content that overflows outside the padding box
1230 PaddingBox,
1231 /// Clip any content that overflows outside the border box
1232 BorderBox,
1233}
1234
1235/// The strategy used to position this node
1236#[derive(Copy, Clone, PartialEq, Eq, Debug, Reflect)]
1237#[reflect(Default, PartialEq, Clone)]
1238#[cfg_attr(
1239 feature = "serialize",
1240 derive(serde::Serialize, serde::Deserialize),
1241 reflect(Serialize, Deserialize)
1242)]
1243pub enum PositionType {
1244 /// Relative to all other nodes with the [`PositionType::Relative`] value.
1245 Relative,
1246 /// Independent of all other nodes, but relative to its parent node.
1247 Absolute,
1248}
1249
1250impl PositionType {
1251 pub const DEFAULT: Self = Self::Relative;
1252}
1253
1254impl Default for PositionType {
1255 fn default() -> Self {
1256 Self::DEFAULT
1257 }
1258}
1259
1260/// Defines if flexbox items appear on a single line or on multiple lines
1261#[derive(Copy, Clone, PartialEq, Eq, Debug, Reflect)]
1262#[reflect(Default, PartialEq, Clone)]
1263#[cfg_attr(
1264 feature = "serialize",
1265 derive(serde::Serialize, serde::Deserialize),
1266 reflect(Serialize, Deserialize)
1267)]
1268pub enum FlexWrap {
1269 /// Single line, will overflow if needed.
1270 NoWrap,
1271 /// Multiple lines, if needed.
1272 Wrap,
1273 /// Same as [`FlexWrap::Wrap`] but new lines will appear before the previous one.
1274 WrapReverse,
1275}
1276
1277impl FlexWrap {
1278 pub const DEFAULT: Self = Self::NoWrap;
1279}
1280
1281impl Default for FlexWrap {
1282 fn default() -> Self {
1283 Self::DEFAULT
1284 }
1285}
1286
1287/// Controls whether grid items are placed row-wise or column-wise as well as whether the sparse or dense packing algorithm is used.
1288///
1289/// The "dense" packing algorithm attempts to fill in holes earlier in the grid, if smaller items come up later.
1290/// This may cause items to appear out-of-order when doing so would fill in holes left by larger items.
1291///
1292/// Defaults to [`GridAutoFlow::Row`].
1293///
1294/// <https://developer.mozilla.org/en-US/docs/Web/CSS/grid-auto-flow>
1295#[derive(Copy, Clone, PartialEq, Eq, Debug, Reflect)]
1296#[reflect(Default, PartialEq, Clone)]
1297#[cfg_attr(
1298 feature = "serialize",
1299 derive(serde::Serialize, serde::Deserialize),
1300 reflect(Serialize, Deserialize)
1301)]
1302pub enum GridAutoFlow {
1303 /// Items are placed by filling each row in turn, adding new rows as necessary.
1304 Row,
1305 /// Items are placed by filling each column in turn, adding new columns as necessary.
1306 Column,
1307 /// Combines `Row` with the dense packing algorithm.
1308 RowDense,
1309 /// Combines `Column` with the dense packing algorithm.
1310 ColumnDense,
1311}
1312
1313impl GridAutoFlow {
1314 pub const DEFAULT: Self = Self::Row;
1315}
1316
1317impl Default for GridAutoFlow {
1318 fn default() -> Self {
1319 Self::DEFAULT
1320 }
1321}
1322
1323#[derive(Default, Copy, Clone, PartialEq, Debug, Reflect)]
1324#[reflect(Default, PartialEq, Clone)]
1325#[cfg_attr(
1326 feature = "serialize",
1327 derive(serde::Serialize, serde::Deserialize),
1328 reflect(Serialize, Deserialize)
1329)]
1330pub enum MinTrackSizingFunction {
1331 /// Track minimum size should be a fixed pixel value
1332 Px(f32),
1333 /// Track minimum size should be a percentage value
1334 Percent(f32),
1335 /// Track minimum size should be content sized under a min-content constraint
1336 MinContent,
1337 /// Track minimum size should be content sized under a max-content constraint
1338 MaxContent,
1339 /// Track minimum size should be automatically sized
1340 #[default]
1341 Auto,
1342 /// Track minimum size should be a percent of the viewport's smaller dimension.
1343 VMin(f32),
1344 /// Track minimum size should be a percent of the viewport's larger dimension.
1345 VMax(f32),
1346 /// Track minimum size should be a percent of the viewport's height dimension.
1347 Vh(f32),
1348 /// Track minimum size should be a percent of the viewport's width dimension.
1349 Vw(f32),
1350}
1351
1352#[derive(Default, Copy, Clone, PartialEq, Debug, Reflect)]
1353#[reflect(Default, PartialEq, Clone)]
1354#[cfg_attr(
1355 feature = "serialize",
1356 derive(serde::Serialize, serde::Deserialize),
1357 reflect(Serialize, Deserialize)
1358)]
1359pub enum MaxTrackSizingFunction {
1360 /// Track maximum size should be a fixed pixel value
1361 Px(f32),
1362 /// Track maximum size should be a percentage value
1363 Percent(f32),
1364 /// Track maximum size should be content sized under a min-content constraint
1365 MinContent,
1366 /// Track maximum size should be content sized under a max-content constraint
1367 MaxContent,
1368 /// Track maximum size should be sized according to the fit-content formula with a fixed pixel limit
1369 FitContentPx(f32),
1370 /// Track maximum size should be sized according to the fit-content formula with a percentage limit
1371 FitContentPercent(f32),
1372 /// Track maximum size should be automatically sized
1373 #[default]
1374 Auto,
1375 /// The dimension as a fraction of the total available grid space (`fr` units in CSS)
1376 /// Specified value is the numerator of the fraction. Denominator is the sum of all fractions specified in that grid dimension.
1377 ///
1378 /// Spec: <https://www.w3.org/TR/css3-grid-layout/#fr-unit>
1379 Fraction(f32),
1380 /// Track maximum size should be a percent of the viewport's smaller dimension.
1381 VMin(f32),
1382 /// Track maximum size should be a percent of the viewport's smaller dimension.
1383 VMax(f32),
1384 /// Track maximum size should be a percent of the viewport's height dimension.
1385 Vh(f32),
1386 /// Track maximum size should be a percent of the viewport's width dimension.
1387 Vw(f32),
1388}
1389
1390/// A [`GridTrack`] is a Row or Column of a CSS Grid. This struct specifies what size the track should be.
1391/// See below for the different "track sizing functions" you can specify.
1392#[derive(Copy, Clone, PartialEq, Debug, Reflect)]
1393#[reflect(Default, PartialEq, Clone)]
1394#[cfg_attr(
1395 feature = "serialize",
1396 derive(serde::Serialize, serde::Deserialize),
1397 reflect(Serialize, Deserialize)
1398)]
1399pub struct GridTrack {
1400 pub(crate) min_sizing_function: MinTrackSizingFunction,
1401 pub(crate) max_sizing_function: MaxTrackSizingFunction,
1402}
1403
1404impl GridTrack {
1405 pub const DEFAULT: Self = Self {
1406 min_sizing_function: MinTrackSizingFunction::Auto,
1407 max_sizing_function: MaxTrackSizingFunction::Auto,
1408 };
1409
1410 /// Create a grid track with a fixed pixel size
1411 pub fn px<T: From<Self>>(value: f32) -> T {
1412 Self {
1413 min_sizing_function: MinTrackSizingFunction::Px(value),
1414 max_sizing_function: MaxTrackSizingFunction::Px(value),
1415 }
1416 .into()
1417 }
1418
1419 /// Create a grid track with a percentage size
1420 pub fn percent<T: From<Self>>(value: f32) -> T {
1421 Self {
1422 min_sizing_function: MinTrackSizingFunction::Percent(value),
1423 max_sizing_function: MaxTrackSizingFunction::Percent(value),
1424 }
1425 .into()
1426 }
1427
1428 /// Create a grid track with an `fr` size.
1429 /// Note that this will give the track a content-based minimum size.
1430 /// Usually you are best off using `GridTrack::flex` instead which uses a zero minimum size.
1431 pub fn fr<T: From<Self>>(value: f32) -> T {
1432 Self {
1433 min_sizing_function: MinTrackSizingFunction::Auto,
1434 max_sizing_function: MaxTrackSizingFunction::Fraction(value),
1435 }
1436 .into()
1437 }
1438
1439 /// Create a grid track with a `minmax(0, Nfr)` size.
1440 pub fn flex<T: From<Self>>(value: f32) -> T {
1441 Self {
1442 min_sizing_function: MinTrackSizingFunction::Px(0.0),
1443 max_sizing_function: MaxTrackSizingFunction::Fraction(value),
1444 }
1445 .into()
1446 }
1447
1448 /// Create a grid track which is automatically sized to fit its contents.
1449 pub fn auto<T: From<Self>>() -> T {
1450 Self {
1451 min_sizing_function: MinTrackSizingFunction::Auto,
1452 max_sizing_function: MaxTrackSizingFunction::Auto,
1453 }
1454 .into()
1455 }
1456
1457 /// Create a grid track which is automatically sized to fit its contents when sized at their "min-content" sizes
1458 pub fn min_content<T: From<Self>>() -> T {
1459 Self {
1460 min_sizing_function: MinTrackSizingFunction::MinContent,
1461 max_sizing_function: MaxTrackSizingFunction::MinContent,
1462 }
1463 .into()
1464 }
1465
1466 /// Create a grid track which is automatically sized to fit its contents when sized at their "max-content" sizes
1467 pub fn max_content<T: From<Self>>() -> T {
1468 Self {
1469 min_sizing_function: MinTrackSizingFunction::MaxContent,
1470 max_sizing_function: MaxTrackSizingFunction::MaxContent,
1471 }
1472 .into()
1473 }
1474
1475 /// Create a `fit-content()` grid track with fixed pixel limit.
1476 ///
1477 /// <https://developer.mozilla.org/en-US/docs/Web/CSS/fit-content_function>
1478 pub fn fit_content_px<T: From<Self>>(limit: f32) -> T {
1479 Self {
1480 min_sizing_function: MinTrackSizingFunction::Auto,
1481 max_sizing_function: MaxTrackSizingFunction::FitContentPx(limit),
1482 }
1483 .into()
1484 }
1485
1486 /// Create a `fit-content()` grid track with percentage limit.
1487 ///
1488 /// <https://developer.mozilla.org/en-US/docs/Web/CSS/fit-content_function>
1489 pub fn fit_content_percent<T: From<Self>>(limit: f32) -> T {
1490 Self {
1491 min_sizing_function: MinTrackSizingFunction::Auto,
1492 max_sizing_function: MaxTrackSizingFunction::FitContentPercent(limit),
1493 }
1494 .into()
1495 }
1496
1497 /// Create a `minmax()` grid track.
1498 ///
1499 /// <https://developer.mozilla.org/en-US/docs/Web/CSS/minmax>
1500 pub fn minmax<T: From<Self>>(min: MinTrackSizingFunction, max: MaxTrackSizingFunction) -> T {
1501 Self {
1502 min_sizing_function: min,
1503 max_sizing_function: max,
1504 }
1505 .into()
1506 }
1507
1508 /// Create a grid track with a percentage of the viewport's smaller dimension
1509 pub fn vmin<T: From<Self>>(value: f32) -> T {
1510 Self {
1511 min_sizing_function: MinTrackSizingFunction::VMin(value),
1512 max_sizing_function: MaxTrackSizingFunction::VMin(value),
1513 }
1514 .into()
1515 }
1516
1517 /// Create a grid track with a percentage of the viewport's larger dimension
1518 pub fn vmax<T: From<Self>>(value: f32) -> T {
1519 Self {
1520 min_sizing_function: MinTrackSizingFunction::VMax(value),
1521 max_sizing_function: MaxTrackSizingFunction::VMax(value),
1522 }
1523 .into()
1524 }
1525
1526 /// Create a grid track with a percentage of the viewport's height dimension
1527 pub fn vh<T: From<Self>>(value: f32) -> T {
1528 Self {
1529 min_sizing_function: MinTrackSizingFunction::Vh(value),
1530 max_sizing_function: MaxTrackSizingFunction::Vh(value),
1531 }
1532 .into()
1533 }
1534
1535 /// Create a grid track with a percentage of the viewport's width dimension
1536 pub fn vw<T: From<Self>>(value: f32) -> T {
1537 Self {
1538 min_sizing_function: MinTrackSizingFunction::Vw(value),
1539 max_sizing_function: MaxTrackSizingFunction::Vw(value),
1540 }
1541 .into()
1542 }
1543}
1544
1545impl Default for GridTrack {
1546 fn default() -> Self {
1547 Self::DEFAULT
1548 }
1549}
1550
1551#[derive(Copy, Clone, PartialEq, Debug, Reflect, From)]
1552#[reflect(Default, PartialEq, Clone)]
1553#[cfg_attr(
1554 feature = "serialize",
1555 derive(serde::Serialize, serde::Deserialize),
1556 reflect(Serialize, Deserialize)
1557)]
1558/// How many times to repeat a repeated grid track
1559///
1560/// <https://developer.mozilla.org/en-US/docs/Web/CSS/repeat>
1561pub enum GridTrackRepetition {
1562 /// Repeat the track fixed number of times
1563 Count(u16),
1564 /// Repeat the track to fill available space
1565 ///
1566 /// <https://developer.mozilla.org/en-US/docs/Web/CSS/repeat#auto-fill>
1567 AutoFill,
1568 /// Repeat the track to fill available space but collapse any tracks that do not end up with
1569 /// an item placed in them.
1570 ///
1571 /// <https://developer.mozilla.org/en-US/docs/Web/CSS/repeat#auto-fit>
1572 AutoFit,
1573}
1574
1575impl Default for GridTrackRepetition {
1576 fn default() -> Self {
1577 Self::Count(1)
1578 }
1579}
1580
1581impl From<i32> for GridTrackRepetition {
1582 fn from(count: i32) -> Self {
1583 Self::Count(count as u16)
1584 }
1585}
1586
1587impl From<usize> for GridTrackRepetition {
1588 fn from(count: usize) -> Self {
1589 Self::Count(count as u16)
1590 }
1591}
1592
1593/// Represents a *possibly* repeated [`GridTrack`].
1594///
1595/// The repetition parameter can either be:
1596/// - The integer `1`, in which case the track is non-repeated.
1597/// - a `u16` count to repeat the track N times.
1598/// - A `GridTrackRepetition::AutoFit` or `GridTrackRepetition::AutoFill`.
1599///
1600/// Note: that in the common case you want a non-repeating track (repetition count 1), you may use the constructor methods on [`GridTrack`]
1601/// to create a `RepeatedGridTrack`. i.e. `GridTrack::px(10.0)` is equivalent to `RepeatedGridTrack::px(1, 10.0)`.
1602///
1603/// You may only use one auto-repetition per track list. And if your track list contains an auto repetition
1604/// then all tracks (in and outside of the repetition) must be fixed size (px or percent). Integer repetitions are just shorthand for writing out
1605/// N tracks longhand and are not subject to the same limitations.
1606#[derive(Clone, PartialEq, Debug, Reflect)]
1607#[reflect(Default, PartialEq, Clone)]
1608#[cfg_attr(
1609 feature = "serialize",
1610 derive(serde::Serialize, serde::Deserialize),
1611 reflect(Serialize, Deserialize)
1612)]
1613pub struct RepeatedGridTrack {
1614 pub(crate) repetition: GridTrackRepetition,
1615 pub(crate) tracks: SmallVec<[GridTrack; 1]>,
1616}
1617
1618impl RepeatedGridTrack {
1619 /// Create a repeating set of grid tracks with a fixed pixel size
1620 pub fn px<T: From<Self>>(repetition: impl Into<GridTrackRepetition>, value: f32) -> T {
1621 Self {
1622 repetition: repetition.into(),
1623 tracks: SmallVec::from_buf([GridTrack::px(value)]),
1624 }
1625 .into()
1626 }
1627
1628 /// Create a repeating set of grid tracks with a percentage size
1629 pub fn percent<T: From<Self>>(repetition: impl Into<GridTrackRepetition>, value: f32) -> T {
1630 Self {
1631 repetition: repetition.into(),
1632 tracks: SmallVec::from_buf([GridTrack::percent(value)]),
1633 }
1634 .into()
1635 }
1636
1637 /// Create a repeating set of grid tracks with automatic size
1638 pub fn auto<T: From<Self>>(repetition: u16) -> T {
1639 Self {
1640 repetition: GridTrackRepetition::Count(repetition),
1641 tracks: SmallVec::from_buf([GridTrack::auto()]),
1642 }
1643 .into()
1644 }
1645
1646 /// Create a repeating set of grid tracks with an `fr` size.
1647 /// Note that this will give the track a content-based minimum size.
1648 /// Usually you are best off using `GridTrack::flex` instead which uses a zero minimum size.
1649 pub fn fr<T: From<Self>>(repetition: u16, value: f32) -> T {
1650 Self {
1651 repetition: GridTrackRepetition::Count(repetition),
1652 tracks: SmallVec::from_buf([GridTrack::fr(value)]),
1653 }
1654 .into()
1655 }
1656
1657 /// Create a repeating set of grid tracks with a `minmax(0, Nfr)` size.
1658 pub fn flex<T: From<Self>>(repetition: u16, value: f32) -> T {
1659 Self {
1660 repetition: GridTrackRepetition::Count(repetition),
1661 tracks: SmallVec::from_buf([GridTrack::flex(value)]),
1662 }
1663 .into()
1664 }
1665
1666 /// Create a repeating set of grid tracks with min-content size
1667 pub fn min_content<T: From<Self>>(repetition: u16) -> T {
1668 Self {
1669 repetition: GridTrackRepetition::Count(repetition),
1670 tracks: SmallVec::from_buf([GridTrack::min_content()]),
1671 }
1672 .into()
1673 }
1674
1675 /// Create a repeating set of grid tracks with max-content size
1676 pub fn max_content<T: From<Self>>(repetition: u16) -> T {
1677 Self {
1678 repetition: GridTrackRepetition::Count(repetition),
1679 tracks: SmallVec::from_buf([GridTrack::max_content()]),
1680 }
1681 .into()
1682 }
1683
1684 /// Create a repeating set of `fit-content()` grid tracks with fixed pixel limit
1685 pub fn fit_content_px<T: From<Self>>(repetition: u16, limit: f32) -> T {
1686 Self {
1687 repetition: GridTrackRepetition::Count(repetition),
1688 tracks: SmallVec::from_buf([GridTrack::fit_content_px(limit)]),
1689 }
1690 .into()
1691 }
1692
1693 /// Create a repeating set of `fit-content()` grid tracks with percentage limit
1694 pub fn fit_content_percent<T: From<Self>>(repetition: u16, limit: f32) -> T {
1695 Self {
1696 repetition: GridTrackRepetition::Count(repetition),
1697 tracks: SmallVec::from_buf([GridTrack::fit_content_percent(limit)]),
1698 }
1699 .into()
1700 }
1701
1702 /// Create a repeating set of `minmax()` grid track
1703 pub fn minmax<T: From<Self>>(
1704 repetition: impl Into<GridTrackRepetition>,
1705 min: MinTrackSizingFunction,
1706 max: MaxTrackSizingFunction,
1707 ) -> T {
1708 Self {
1709 repetition: repetition.into(),
1710 tracks: SmallVec::from_buf([GridTrack::minmax(min, max)]),
1711 }
1712 .into()
1713 }
1714
1715 /// Create a repeating set of grid tracks with the percentage size of the viewport's smaller dimension
1716 pub fn vmin<T: From<Self>>(repetition: impl Into<GridTrackRepetition>, value: f32) -> T {
1717 Self {
1718 repetition: repetition.into(),
1719 tracks: SmallVec::from_buf([GridTrack::vmin(value)]),
1720 }
1721 .into()
1722 }
1723
1724 /// Create a repeating set of grid tracks with the percentage size of the viewport's larger dimension
1725 pub fn vmax<T: From<Self>>(repetition: impl Into<GridTrackRepetition>, value: f32) -> T {
1726 Self {
1727 repetition: repetition.into(),
1728 tracks: SmallVec::from_buf([GridTrack::vmax(value)]),
1729 }
1730 .into()
1731 }
1732
1733 /// Create a repeating set of grid tracks with the percentage size of the viewport's height dimension
1734 pub fn vh<T: From<Self>>(repetition: impl Into<GridTrackRepetition>, value: f32) -> T {
1735 Self {
1736 repetition: repetition.into(),
1737 tracks: SmallVec::from_buf([GridTrack::vh(value)]),
1738 }
1739 .into()
1740 }
1741
1742 /// Create a repeating set of grid tracks with the percentage size of the viewport's width dimension
1743 pub fn vw<T: From<Self>>(repetition: impl Into<GridTrackRepetition>, value: f32) -> T {
1744 Self {
1745 repetition: repetition.into(),
1746 tracks: SmallVec::from_buf([GridTrack::vw(value)]),
1747 }
1748 .into()
1749 }
1750
1751 /// Create a repetition of a set of tracks
1752 pub fn repeat_many<T: From<Self>>(
1753 repetition: impl Into<GridTrackRepetition>,
1754 tracks: impl Into<Vec<GridTrack>>,
1755 ) -> T {
1756 Self {
1757 repetition: repetition.into(),
1758 tracks: SmallVec::from_vec(tracks.into()),
1759 }
1760 .into()
1761 }
1762}
1763
1764impl Default for RepeatedGridTrack {
1765 fn default() -> Self {
1766 Self {
1767 repetition: Default::default(),
1768 tracks: SmallVec::from_buf([GridTrack::default()]),
1769 }
1770 }
1771}
1772
1773impl From<GridTrack> for RepeatedGridTrack {
1774 fn from(track: GridTrack) -> Self {
1775 Self {
1776 repetition: GridTrackRepetition::Count(1),
1777 tracks: SmallVec::from_buf([track]),
1778 }
1779 }
1780}
1781
1782impl From<GridTrack> for Vec<GridTrack> {
1783 fn from(track: GridTrack) -> Self {
1784 vec![track]
1785 }
1786}
1787
1788impl From<GridTrack> for Vec<RepeatedGridTrack> {
1789 fn from(track: GridTrack) -> Self {
1790 vec![RepeatedGridTrack {
1791 repetition: GridTrackRepetition::Count(1),
1792 tracks: SmallVec::from_buf([track]),
1793 }]
1794 }
1795}
1796
1797impl From<RepeatedGridTrack> for Vec<RepeatedGridTrack> {
1798 fn from(track: RepeatedGridTrack) -> Self {
1799 vec![track]
1800 }
1801}
1802
1803#[derive(Copy, Clone, PartialEq, Eq, Debug, Reflect)]
1804#[reflect(Default, PartialEq, Clone)]
1805#[cfg_attr(
1806 feature = "serialize",
1807 derive(serde::Serialize, serde::Deserialize),
1808 reflect(Serialize, Deserialize)
1809)]
1810/// Represents the position of a grid item in a single axis.
1811///
1812/// There are 3 fields which may be set:
1813/// - `start`: which grid line the item should start at
1814/// - `end`: which grid line the item should end at
1815/// - `span`: how many tracks the item should span
1816///
1817/// The default `span` is 1. If neither `start` or `end` is set then the item will be placed automatically.
1818///
1819/// Generally, at most two fields should be set. If all three fields are specified then `span` will be ignored. If `end` specifies an earlier
1820/// grid line than `start` then `end` will be ignored and the item will have a span of 1.
1821///
1822/// <https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Grid_Layout/Line-based_Placement_with_CSS_Grid>
1823pub struct GridPlacement {
1824 /// The grid line at which the item should start.
1825 /// Lines are 1-indexed.
1826 /// Negative indexes count backwards from the end of the grid.
1827 /// Zero is not a valid index.
1828 pub(crate) start: Option<NonZero<i16>>,
1829 /// How many grid tracks the item should span.
1830 /// Defaults to 1.
1831 pub(crate) span: Option<NonZero<u16>>,
1832 /// The grid line at which the item should end.
1833 /// Lines are 1-indexed.
1834 /// Negative indexes count backwards from the end of the grid.
1835 /// Zero is not a valid index.
1836 pub(crate) end: Option<NonZero<i16>>,
1837}
1838
1839impl GridPlacement {
1840 pub const DEFAULT: Self = Self {
1841 start: None,
1842 span: NonZero::<u16>::new(1),
1843 end: None,
1844 };
1845
1846 /// Place the grid item automatically (letting the `span` default to `1`).
1847 pub fn auto() -> Self {
1848 Self::DEFAULT
1849 }
1850
1851 /// Place the grid item automatically, specifying how many tracks it should `span`.
1852 ///
1853 /// # Panics
1854 ///
1855 /// Panics if `span` is `0`.
1856 pub fn span(span: u16) -> Self {
1857 Self {
1858 start: None,
1859 end: None,
1860 span: try_into_grid_span(span).expect("Invalid span value of 0."),
1861 }
1862 }
1863
1864 /// Place the grid item specifying the `start` grid line (letting the `span` default to `1`).
1865 ///
1866 /// # Panics
1867 ///
1868 /// Panics if `start` is `0`.
1869 pub fn start(start: i16) -> Self {
1870 Self {
1871 start: try_into_grid_index(start).expect("Invalid start value of 0."),
1872 ..Self::DEFAULT
1873 }
1874 }
1875
1876 /// Place the grid item specifying the `end` grid line (letting the `span` default to `1`).
1877 ///
1878 /// # Panics
1879 ///
1880 /// Panics if `end` is `0`.
1881 pub fn end(end: i16) -> Self {
1882 Self {
1883 end: try_into_grid_index(end).expect("Invalid end value of 0."),
1884 ..Self::DEFAULT
1885 }
1886 }
1887
1888 /// Place the grid item specifying the `start` grid line and how many tracks it should `span`.
1889 ///
1890 /// # Panics
1891 ///
1892 /// Panics if `start` or `span` is `0`.
1893 pub fn start_span(start: i16, span: u16) -> Self {
1894 Self {
1895 start: try_into_grid_index(start).expect("Invalid start value of 0."),
1896 end: None,
1897 span: try_into_grid_span(span).expect("Invalid span value of 0."),
1898 }
1899 }
1900
1901 /// Place the grid item specifying `start` and `end` grid lines (`span` will be inferred)
1902 ///
1903 /// # Panics
1904 ///
1905 /// Panics if `start` or `end` is `0`.
1906 pub fn start_end(start: i16, end: i16) -> Self {
1907 Self {
1908 start: try_into_grid_index(start).expect("Invalid start value of 0."),
1909 end: try_into_grid_index(end).expect("Invalid end value of 0."),
1910 span: None,
1911 }
1912 }
1913
1914 /// Place the grid item specifying the `end` grid line and how many tracks it should `span`.
1915 ///
1916 /// # Panics
1917 ///
1918 /// Panics if `end` or `span` is `0`.
1919 pub fn end_span(end: i16, span: u16) -> Self {
1920 Self {
1921 start: None,
1922 end: try_into_grid_index(end).expect("Invalid end value of 0."),
1923 span: try_into_grid_span(span).expect("Invalid span value of 0."),
1924 }
1925 }
1926
1927 /// Mutate the item, setting the `start` grid line
1928 ///
1929 /// # Panics
1930 ///
1931 /// Panics if `start` is `0`.
1932 pub fn set_start(mut self, start: i16) -> Self {
1933 self.start = try_into_grid_index(start).expect("Invalid start value of 0.");
1934 self
1935 }
1936
1937 /// Mutate the item, setting the `end` grid line
1938 ///
1939 /// # Panics
1940 ///
1941 /// Panics if `end` is `0`.
1942 pub fn set_end(mut self, end: i16) -> Self {
1943 self.end = try_into_grid_index(end).expect("Invalid end value of 0.");
1944 self
1945 }
1946
1947 /// Mutate the item, setting the number of tracks the item should `span`
1948 ///
1949 /// # Panics
1950 ///
1951 /// Panics if `span` is `0`.
1952 pub fn set_span(mut self, span: u16) -> Self {
1953 self.span = try_into_grid_span(span).expect("Invalid span value of 0.");
1954 self
1955 }
1956
1957 /// Returns the grid line at which the item should start, or `None` if not set.
1958 pub fn get_start(self) -> Option<i16> {
1959 self.start.map(NonZero::<i16>::get)
1960 }
1961
1962 /// Returns the grid line at which the item should end, or `None` if not set.
1963 pub fn get_end(self) -> Option<i16> {
1964 self.end.map(NonZero::<i16>::get)
1965 }
1966
1967 /// Returns span for this grid item, or `None` if not set.
1968 pub fn get_span(self) -> Option<u16> {
1969 self.span.map(NonZero::<u16>::get)
1970 }
1971}
1972
1973impl Default for GridPlacement {
1974 fn default() -> Self {
1975 Self::DEFAULT
1976 }
1977}
1978
1979/// Convert an `i16` to `NonZero<i16>`, fails on `0` and returns the `InvalidZeroIndex` error.
1980fn try_into_grid_index(index: i16) -> Result<Option<NonZero<i16>>, GridPlacementError> {
1981 Ok(Some(
1982 NonZero::<i16>::new(index).ok_or(GridPlacementError::InvalidZeroIndex)?,
1983 ))
1984}
1985
1986/// Convert a `u16` to `NonZero<u16>`, fails on `0` and returns the `InvalidZeroSpan` error.
1987fn try_into_grid_span(span: u16) -> Result<Option<NonZero<u16>>, GridPlacementError> {
1988 Ok(Some(
1989 NonZero::<u16>::new(span).ok_or(GridPlacementError::InvalidZeroSpan)?,
1990 ))
1991}
1992
1993/// Errors that occur when setting constraints for a `GridPlacement`
1994#[derive(Debug, Eq, PartialEq, Clone, Copy, Error)]
1995pub enum GridPlacementError {
1996 #[error("Zero is not a valid grid position")]
1997 InvalidZeroIndex,
1998 #[error("Spans cannot be zero length")]
1999 InvalidZeroSpan,
2000}
2001
2002/// The background color of the node
2003///
2004/// This serves as the "fill" color.
2005#[derive(Component, Copy, Clone, Debug, PartialEq, Reflect)]
2006#[reflect(Component, Default, Debug, PartialEq, Clone)]
2007#[cfg_attr(
2008 feature = "serialize",
2009 derive(serde::Serialize, serde::Deserialize),
2010 reflect(Serialize, Deserialize)
2011)]
2012pub struct BackgroundColor(pub Color);
2013
2014impl BackgroundColor {
2015 /// Background color is transparent by default.
2016 pub const DEFAULT: Self = Self(Color::NONE);
2017}
2018
2019impl Default for BackgroundColor {
2020 fn default() -> Self {
2021 Self::DEFAULT
2022 }
2023}
2024
2025impl<T: Into<Color>> From<T> for BackgroundColor {
2026 fn from(color: T) -> Self {
2027 Self(color.into())
2028 }
2029}
2030
2031/// The border color of the UI node.
2032#[derive(Component, Copy, Clone, Debug, PartialEq, Reflect)]
2033#[reflect(Component, Default, Debug, PartialEq, Clone)]
2034#[cfg_attr(
2035 feature = "serialize",
2036 derive(serde::Serialize, serde::Deserialize),
2037 reflect(Serialize, Deserialize)
2038)]
2039pub struct BorderColor(pub Color);
2040
2041impl<T: Into<Color>> From<T> for BorderColor {
2042 fn from(color: T) -> Self {
2043 Self(color.into())
2044 }
2045}
2046
2047impl BorderColor {
2048 /// Border color is transparent by default.
2049 pub const DEFAULT: Self = BorderColor(Color::NONE);
2050}
2051
2052impl Default for BorderColor {
2053 fn default() -> Self {
2054 Self::DEFAULT
2055 }
2056}
2057
2058#[derive(Component, Copy, Clone, Default, Debug, PartialEq, Reflect)]
2059#[reflect(Component, Default, Debug, PartialEq, Clone)]
2060#[cfg_attr(
2061 feature = "serialize",
2062 derive(serde::Serialize, serde::Deserialize),
2063 reflect(Serialize, Deserialize)
2064)]
2065/// The [`Outline`] component adds an outline outside the edge of a UI node.
2066/// Outlines do not take up space in the layout.
2067///
2068/// To add an [`Outline`] to a ui node you can spawn a `(Node, Outline)` tuple bundle:
2069/// ```
2070/// # use bevy_ecs::prelude::*;
2071/// # use bevy_ui::prelude::*;
2072/// # use bevy_color::palettes::basic::{RED, BLUE};
2073/// fn setup_ui(mut commands: Commands) {
2074/// commands.spawn((
2075/// Node {
2076/// width: Val::Px(100.),
2077/// height: Val::Px(100.),
2078/// ..Default::default()
2079/// },
2080/// BackgroundColor(BLUE.into()),
2081/// Outline::new(Val::Px(10.), Val::ZERO, RED.into())
2082/// ));
2083/// }
2084/// ```
2085///
2086/// [`Outline`] components can also be added later to existing UI nodes:
2087/// ```
2088/// # use bevy_ecs::prelude::*;
2089/// # use bevy_ui::prelude::*;
2090/// # use bevy_color::Color;
2091/// fn outline_hovered_button_system(
2092/// mut commands: Commands,
2093/// mut node_query: Query<(Entity, &Interaction, Option<&mut Outline>), Changed<Interaction>>,
2094/// ) {
2095/// for (entity, interaction, mut maybe_outline) in node_query.iter_mut() {
2096/// let outline_color =
2097/// if matches!(*interaction, Interaction::Hovered) {
2098/// Color::WHITE
2099/// } else {
2100/// Color::NONE
2101/// };
2102/// if let Some(mut outline) = maybe_outline {
2103/// outline.color = outline_color;
2104/// } else {
2105/// commands.entity(entity).insert(Outline::new(Val::Px(10.), Val::ZERO, outline_color));
2106/// }
2107/// }
2108/// }
2109/// ```
2110/// Inserting and removing an [`Outline`] component repeatedly will result in table moves, so it is generally preferable to
2111/// set `Outline::color` to [`Color::NONE`] to hide an outline.
2112pub struct Outline {
2113 /// The width of the outline.
2114 ///
2115 /// Percentage `Val` values are resolved based on the width of the outlined [`Node`].
2116 pub width: Val,
2117 /// The amount of space between a node's outline the edge of the node.
2118 ///
2119 /// Percentage `Val` values are resolved based on the width of the outlined [`Node`].
2120 pub offset: Val,
2121 /// The color of the outline.
2122 ///
2123 /// If you are frequently toggling outlines for a UI node on and off it is recommended to set [`Color::NONE`] to hide the outline.
2124 /// This avoids the table moves that would occur from the repeated insertion and removal of the `Outline` component.
2125 pub color: Color,
2126}
2127
2128impl Outline {
2129 /// Create a new outline
2130 pub const fn new(width: Val, offset: Val, color: Color) -> Self {
2131 Self {
2132 width,
2133 offset,
2134 color,
2135 }
2136 }
2137}
2138
2139/// The calculated clip of the node
2140#[derive(Component, Default, Copy, Clone, Debug, Reflect)]
2141#[reflect(Component, Default, Debug, Clone)]
2142pub struct CalculatedClip {
2143 /// The rect of the clip
2144 pub clip: Rect,
2145}
2146
2147/// Indicates that this [`Node`] entity's front-to-back ordering is not controlled solely
2148/// by its location in the UI hierarchy. A node with a higher z-index will appear on top
2149/// of sibling nodes with a lower z-index.
2150///
2151/// UI nodes that have the same z-index will appear according to the order in which they
2152/// appear in the UI hierarchy. In such a case, the last node to be added to its parent
2153/// will appear in front of its siblings.
2154///
2155/// Nodes without this component will be treated as if they had a value of [`ZIndex(0)`].
2156///
2157/// Use [`GlobalZIndex`] if you need to order separate UI hierarchies or nodes that are
2158/// not siblings in a given UI hierarchy.
2159#[derive(Component, Copy, Clone, Debug, Default, PartialEq, Eq, Reflect)]
2160#[reflect(Component, Default, Debug, PartialEq, Clone)]
2161pub struct ZIndex(pub i32);
2162
2163/// `GlobalZIndex` allows a [`Node`] entity anywhere in the UI hierarchy to escape the implicit draw ordering of the UI's layout tree and
2164/// be rendered above or below other UI nodes.
2165/// Nodes with a `GlobalZIndex` of greater than 0 will be drawn on top of nodes without a `GlobalZIndex` or nodes with a lower `GlobalZIndex`.
2166/// Nodes with a `GlobalZIndex` of less than 0 will be drawn below nodes without a `GlobalZIndex` or nodes with a greater `GlobalZIndex`.
2167///
2168/// If two Nodes have the same `GlobalZIndex`, the node with the greater [`ZIndex`] will be drawn on top.
2169#[derive(Component, Copy, Clone, Debug, Default, PartialEq, Eq, Reflect)]
2170#[reflect(Component, Default, Debug, PartialEq, Clone)]
2171pub struct GlobalZIndex(pub i32);
2172
2173/// Used to add rounded corners to a UI node. You can set a UI node to have uniformly
2174/// rounded corners or specify different radii for each corner. If a given radius exceeds half
2175/// the length of the smallest dimension between the node's height or width, the radius will
2176/// calculated as half the smallest dimension.
2177///
2178/// Elliptical nodes are not supported yet. Percentage values are based on the node's smallest
2179/// dimension, either width or height.
2180///
2181/// # Example
2182/// ```rust
2183/// # use bevy_ecs::prelude::*;
2184/// # use bevy_ui::prelude::*;
2185/// # use bevy_color::palettes::basic::{BLUE};
2186/// fn setup_ui(mut commands: Commands) {
2187/// commands.spawn((
2188/// Node {
2189/// width: Val::Px(100.),
2190/// height: Val::Px(100.),
2191/// border: UiRect::all(Val::Px(2.)),
2192/// ..Default::default()
2193/// },
2194/// BackgroundColor(BLUE.into()),
2195/// BorderRadius::new(
2196/// // top left
2197/// Val::Px(10.),
2198/// // top right
2199/// Val::Px(20.),
2200/// // bottom right
2201/// Val::Px(30.),
2202/// // bottom left
2203/// Val::Px(40.),
2204/// ),
2205/// ));
2206/// }
2207/// ```
2208///
2209/// <https://developer.mozilla.org/en-US/docs/Web/CSS/border-radius>
2210#[derive(Component, Copy, Clone, Debug, PartialEq, Reflect)]
2211#[reflect(Component, PartialEq, Default, Debug, Clone)]
2212#[cfg_attr(
2213 feature = "serialize",
2214 derive(serde::Serialize, serde::Deserialize),
2215 reflect(Serialize, Deserialize)
2216)]
2217pub struct BorderRadius {
2218 pub top_left: Val,
2219 pub top_right: Val,
2220 pub bottom_left: Val,
2221 pub bottom_right: Val,
2222}
2223
2224impl Default for BorderRadius {
2225 fn default() -> Self {
2226 Self::DEFAULT
2227 }
2228}
2229
2230impl BorderRadius {
2231 pub const DEFAULT: Self = Self::ZERO;
2232
2233 /// Zero curvature. All the corners will be right-angled.
2234 pub const ZERO: Self = Self::all(Val::Px(0.));
2235
2236 /// Maximum curvature. The UI Node will take a capsule shape or circular if width and height are equal.
2237 pub const MAX: Self = Self::all(Val::Px(f32::MAX));
2238
2239 #[inline]
2240 /// Set all four corners to the same curvature.
2241 pub const fn all(radius: Val) -> Self {
2242 Self {
2243 top_left: radius,
2244 top_right: radius,
2245 bottom_left: radius,
2246 bottom_right: radius,
2247 }
2248 }
2249
2250 #[inline]
2251 pub const fn new(top_left: Val, top_right: Val, bottom_right: Val, bottom_left: Val) -> Self {
2252 Self {
2253 top_left,
2254 top_right,
2255 bottom_right,
2256 bottom_left,
2257 }
2258 }
2259
2260 #[inline]
2261 /// Sets the radii to logical pixel values.
2262 pub const fn px(top_left: f32, top_right: f32, bottom_right: f32, bottom_left: f32) -> Self {
2263 Self {
2264 top_left: Val::Px(top_left),
2265 top_right: Val::Px(top_right),
2266 bottom_right: Val::Px(bottom_right),
2267 bottom_left: Val::Px(bottom_left),
2268 }
2269 }
2270
2271 #[inline]
2272 /// Sets the radii to percentage values.
2273 pub const fn percent(
2274 top_left: f32,
2275 top_right: f32,
2276 bottom_right: f32,
2277 bottom_left: f32,
2278 ) -> Self {
2279 Self {
2280 top_left: Val::Percent(top_left),
2281 top_right: Val::Percent(top_right),
2282 bottom_right: Val::Percent(bottom_right),
2283 bottom_left: Val::Percent(bottom_left),
2284 }
2285 }
2286
2287 #[inline]
2288 /// Sets the radius for the top left corner.
2289 /// Remaining corners will be right-angled.
2290 pub const fn top_left(radius: Val) -> Self {
2291 Self {
2292 top_left: radius,
2293 ..Self::DEFAULT
2294 }
2295 }
2296
2297 #[inline]
2298 /// Sets the radius for the top right corner.
2299 /// Remaining corners will be right-angled.
2300 pub const fn top_right(radius: Val) -> Self {
2301 Self {
2302 top_right: radius,
2303 ..Self::DEFAULT
2304 }
2305 }
2306
2307 #[inline]
2308 /// Sets the radius for the bottom right corner.
2309 /// Remaining corners will be right-angled.
2310 pub const fn bottom_right(radius: Val) -> Self {
2311 Self {
2312 bottom_right: radius,
2313 ..Self::DEFAULT
2314 }
2315 }
2316
2317 #[inline]
2318 /// Sets the radius for the bottom left corner.
2319 /// Remaining corners will be right-angled.
2320 pub const fn bottom_left(radius: Val) -> Self {
2321 Self {
2322 bottom_left: radius,
2323 ..Self::DEFAULT
2324 }
2325 }
2326
2327 #[inline]
2328 /// Sets the radii for the top left and bottom left corners.
2329 /// Remaining corners will be right-angled.
2330 pub const fn left(radius: Val) -> Self {
2331 Self {
2332 top_left: radius,
2333 bottom_left: radius,
2334 ..Self::DEFAULT
2335 }
2336 }
2337
2338 #[inline]
2339 /// Sets the radii for the top right and bottom right corners.
2340 /// Remaining corners will be right-angled.
2341 pub const fn right(radius: Val) -> Self {
2342 Self {
2343 top_right: radius,
2344 bottom_right: radius,
2345 ..Self::DEFAULT
2346 }
2347 }
2348
2349 #[inline]
2350 /// Sets the radii for the top left and top right corners.
2351 /// Remaining corners will be right-angled.
2352 pub const fn top(radius: Val) -> Self {
2353 Self {
2354 top_left: radius,
2355 top_right: radius,
2356 ..Self::DEFAULT
2357 }
2358 }
2359
2360 #[inline]
2361 /// Sets the radii for the bottom left and bottom right corners.
2362 /// Remaining corners will be right-angled.
2363 pub const fn bottom(radius: Val) -> Self {
2364 Self {
2365 bottom_left: radius,
2366 bottom_right: radius,
2367 ..Self::DEFAULT
2368 }
2369 }
2370
2371 /// Returns the [`BorderRadius`] with its `top_left` field set to the given value.
2372 #[inline]
2373 pub const fn with_top_left(mut self, radius: Val) -> Self {
2374 self.top_left = radius;
2375 self
2376 }
2377
2378 /// Returns the [`BorderRadius`] with its `top_right` field set to the given value.
2379 #[inline]
2380 pub const fn with_top_right(mut self, radius: Val) -> Self {
2381 self.top_right = radius;
2382 self
2383 }
2384
2385 /// Returns the [`BorderRadius`] with its `bottom_right` field set to the given value.
2386 #[inline]
2387 pub const fn with_bottom_right(mut self, radius: Val) -> Self {
2388 self.bottom_right = radius;
2389 self
2390 }
2391
2392 /// Returns the [`BorderRadius`] with its `bottom_left` field set to the given value.
2393 #[inline]
2394 pub const fn with_bottom_left(mut self, radius: Val) -> Self {
2395 self.bottom_left = radius;
2396 self
2397 }
2398
2399 /// Returns the [`BorderRadius`] with its `top_left` and `bottom_left` fields set to the given value.
2400 #[inline]
2401 pub const fn with_left(mut self, radius: Val) -> Self {
2402 self.top_left = radius;
2403 self.bottom_left = radius;
2404 self
2405 }
2406
2407 /// Returns the [`BorderRadius`] with its `top_right` and `bottom_right` fields set to the given value.
2408 #[inline]
2409 pub const fn with_right(mut self, radius: Val) -> Self {
2410 self.top_right = radius;
2411 self.bottom_right = radius;
2412 self
2413 }
2414
2415 /// Returns the [`BorderRadius`] with its `top_left` and `top_right` fields set to the given value.
2416 #[inline]
2417 pub const fn with_top(mut self, radius: Val) -> Self {
2418 self.top_left = radius;
2419 self.top_right = radius;
2420 self
2421 }
2422
2423 /// Returns the [`BorderRadius`] with its `bottom_left` and `bottom_right` fields set to the given value.
2424 #[inline]
2425 pub const fn with_bottom(mut self, radius: Val) -> Self {
2426 self.bottom_left = radius;
2427 self.bottom_right = radius;
2428 self
2429 }
2430
2431 /// Resolve the border radius for a single corner from the given context values.
2432 /// Returns the radius of the corner in physical pixels.
2433 pub fn resolve_single_corner(
2434 radius: Val,
2435 node_size: Vec2,
2436 viewport_size: Vec2,
2437 scale_factor: f32,
2438 ) -> f32 {
2439 match radius {
2440 Val::Auto => 0.,
2441 Val::Px(px) => px * scale_factor,
2442 Val::Percent(percent) => node_size.min_element() * percent / 100.,
2443 Val::Vw(percent) => viewport_size.x * percent / 100.,
2444 Val::Vh(percent) => viewport_size.y * percent / 100.,
2445 Val::VMin(percent) => viewport_size.min_element() * percent / 100.,
2446 Val::VMax(percent) => viewport_size.max_element() * percent / 100.,
2447 }
2448 .clamp(0., 0.5 * node_size.min_element())
2449 }
2450
2451 /// Resolve the border radii for the corners from the given context values.
2452 /// Returns the radii of the each corner in physical pixels.
2453 pub fn resolve(
2454 &self,
2455 node_size: Vec2,
2456 viewport_size: Vec2,
2457 scale_factor: f32,
2458 ) -> ResolvedBorderRadius {
2459 ResolvedBorderRadius {
2460 top_left: Self::resolve_single_corner(
2461 self.top_left,
2462 node_size,
2463 viewport_size,
2464 scale_factor,
2465 ),
2466 top_right: Self::resolve_single_corner(
2467 self.top_right,
2468 node_size,
2469 viewport_size,
2470 scale_factor,
2471 ),
2472 bottom_left: Self::resolve_single_corner(
2473 self.bottom_left,
2474 node_size,
2475 viewport_size,
2476 scale_factor,
2477 ),
2478 bottom_right: Self::resolve_single_corner(
2479 self.bottom_right,
2480 node_size,
2481 viewport_size,
2482 scale_factor,
2483 ),
2484 }
2485 }
2486}
2487
2488/// Represents the resolved border radius values for a UI node.
2489///
2490/// The values are in physical pixels.
2491#[derive(Copy, Clone, Debug, Default, PartialEq, Reflect)]
2492#[reflect(Clone, PartialEq, Default)]
2493pub struct ResolvedBorderRadius {
2494 pub top_left: f32,
2495 pub top_right: f32,
2496 pub bottom_left: f32,
2497 pub bottom_right: f32,
2498}
2499
2500impl ResolvedBorderRadius {
2501 pub const ZERO: Self = Self {
2502 top_left: 0.,
2503 top_right: 0.,
2504 bottom_left: 0.,
2505 bottom_right: 0.,
2506 };
2507}
2508
2509#[derive(Component, Clone, Debug, Default, PartialEq, Reflect, Deref, DerefMut)]
2510#[reflect(Component, PartialEq, Default, Clone)]
2511#[cfg_attr(
2512 feature = "serialize",
2513 derive(serde::Serialize, serde::Deserialize),
2514 reflect(Serialize, Deserialize)
2515)]
2516/// List of shadows to draw for a [`Node`].
2517///
2518/// Draw order is determined implicitly from the vector of [`ShadowStyle`]s, back-to-front.
2519pub struct BoxShadow(pub Vec<ShadowStyle>);
2520
2521impl BoxShadow {
2522 /// A single drop shadow
2523 pub fn new(
2524 color: Color,
2525 x_offset: Val,
2526 y_offset: Val,
2527 spread_radius: Val,
2528 blur_radius: Val,
2529 ) -> Self {
2530 Self(vec![ShadowStyle {
2531 color,
2532 x_offset,
2533 y_offset,
2534 spread_radius,
2535 blur_radius,
2536 }])
2537 }
2538}
2539
2540impl From<ShadowStyle> for BoxShadow {
2541 fn from(value: ShadowStyle) -> Self {
2542 Self(vec![value])
2543 }
2544}
2545
2546#[derive(Copy, Clone, Debug, PartialEq, Reflect)]
2547#[reflect(PartialEq, Default, Clone)]
2548#[cfg_attr(
2549 feature = "serialize",
2550 derive(serde::Serialize, serde::Deserialize),
2551 reflect(Serialize, Deserialize)
2552)]
2553pub struct ShadowStyle {
2554 /// The shadow's color
2555 pub color: Color,
2556 /// Horizontal offset
2557 pub x_offset: Val,
2558 /// Vertical offset
2559 pub y_offset: Val,
2560 /// How much the shadow should spread outward.
2561 ///
2562 /// Negative values will make the shadow shrink inwards.
2563 /// Percentage values are based on the width of the UI node.
2564 pub spread_radius: Val,
2565 /// Blurriness of the shadow
2566 pub blur_radius: Val,
2567}
2568
2569impl Default for ShadowStyle {
2570 fn default() -> Self {
2571 Self {
2572 color: Color::BLACK,
2573 x_offset: Val::Percent(20.),
2574 y_offset: Val::Percent(20.),
2575 spread_radius: Val::ZERO,
2576 blur_radius: Val::Percent(10.),
2577 }
2578 }
2579}
2580
2581#[derive(Component, Copy, Clone, Debug, PartialEq, Reflect)]
2582#[reflect(Component, Debug, PartialEq, Default, Clone)]
2583#[cfg_attr(
2584 feature = "serialize",
2585 derive(serde::Serialize, serde::Deserialize),
2586 reflect(Serialize, Deserialize)
2587)]
2588/// This component can be added to any UI node to modify its layout behavior.
2589pub struct LayoutConfig {
2590 /// If set to true the coordinates for this node and its descendents will be rounded to the nearest physical pixel.
2591 /// This can help prevent visual artifacts like blurry images or semi-transparent edges that can occur with sub-pixel positioning.
2592 ///
2593 /// Defaults to true.
2594 pub use_rounding: bool,
2595}
2596
2597impl Default for LayoutConfig {
2598 fn default() -> Self {
2599 Self { use_rounding: true }
2600 }
2601}
2602
2603#[cfg(test)]
2604mod tests {
2605 use crate::GridPlacement;
2606
2607 #[test]
2608 fn invalid_grid_placement_values() {
2609 assert!(std::panic::catch_unwind(|| GridPlacement::span(0)).is_err());
2610 assert!(std::panic::catch_unwind(|| GridPlacement::start(0)).is_err());
2611 assert!(std::panic::catch_unwind(|| GridPlacement::end(0)).is_err());
2612 assert!(std::panic::catch_unwind(|| GridPlacement::start_end(0, 1)).is_err());
2613 assert!(std::panic::catch_unwind(|| GridPlacement::start_end(-1, 0)).is_err());
2614 assert!(std::panic::catch_unwind(|| GridPlacement::start_span(1, 0)).is_err());
2615 assert!(std::panic::catch_unwind(|| GridPlacement::start_span(0, 1)).is_err());
2616 assert!(std::panic::catch_unwind(|| GridPlacement::end_span(0, 1)).is_err());
2617 assert!(std::panic::catch_unwind(|| GridPlacement::end_span(1, 0)).is_err());
2618 assert!(std::panic::catch_unwind(|| GridPlacement::default().set_start(0)).is_err());
2619 assert!(std::panic::catch_unwind(|| GridPlacement::default().set_end(0)).is_err());
2620 assert!(std::panic::catch_unwind(|| GridPlacement::default().set_span(0)).is_err());
2621 }
2622
2623 #[test]
2624 fn grid_placement_accessors() {
2625 assert_eq!(GridPlacement::start(5).get_start(), Some(5));
2626 assert_eq!(GridPlacement::end(-4).get_end(), Some(-4));
2627 assert_eq!(GridPlacement::span(2).get_span(), Some(2));
2628 assert_eq!(GridPlacement::start_end(11, 21).get_span(), None);
2629 assert_eq!(GridPlacement::start_span(3, 5).get_end(), None);
2630 assert_eq!(GridPlacement::end_span(-4, 12).get_start(), None);
2631 }
2632}
2633
2634/// Indicates that this root [`Node`] entity should be rendered to a specific camera.
2635///
2636/// UI then will be laid out respecting the camera's viewport and scale factor, and
2637/// rendered to this camera's [`bevy_render::camera::RenderTarget`].
2638///
2639/// Setting this component on a non-root node will have no effect. It will be overridden
2640/// by the root node's component.
2641///
2642/// Root node's without an explicit [`UiTargetCamera`] will be rendered to the default UI camera,
2643/// which is either a single camera with the [`IsDefaultUiCamera`] marker component or the highest
2644/// order camera targeting the primary window.
2645#[derive(Component, Clone, Debug, Reflect, Eq, PartialEq)]
2646#[reflect(Component, Debug, PartialEq, Clone)]
2647pub struct UiTargetCamera(pub Entity);
2648
2649impl UiTargetCamera {
2650 pub fn entity(&self) -> Entity {
2651 self.0
2652 }
2653}
2654
2655/// Marker used to identify default cameras, they will have priority over the [`PrimaryWindow`] camera.
2656///
2657/// This is useful if the [`PrimaryWindow`] has two cameras, one of them used
2658/// just for debug purposes and the user wants a way to choose the default [`Camera`]
2659/// without having to add a [`UiTargetCamera`] to the root node.
2660///
2661/// Another use is when the user wants the Ui to be in another window by default,
2662/// all that is needed is to place this component on the camera
2663///
2664/// ```
2665/// # use bevy_ui::prelude::*;
2666/// # use bevy_ecs::prelude::Commands;
2667/// # use bevy_render::camera::{Camera, RenderTarget};
2668/// # use bevy_core_pipeline::prelude::Camera2d;
2669/// # use bevy_window::{Window, WindowRef};
2670///
2671/// fn spawn_camera(mut commands: Commands) {
2672/// let another_window = commands.spawn(Window {
2673/// title: String::from("Another window"),
2674/// ..Default::default()
2675/// }).id();
2676/// commands.spawn((
2677/// Camera2d,
2678/// Camera {
2679/// target: RenderTarget::Window(WindowRef::Entity(another_window)),
2680/// ..Default::default()
2681/// },
2682/// // We add the Marker here so all Ui will spawn in
2683/// // another window if no UiTargetCamera is specified
2684/// IsDefaultUiCamera
2685/// ));
2686/// }
2687/// ```
2688#[derive(Component, Default)]
2689pub struct IsDefaultUiCamera;
2690
2691#[derive(SystemParam)]
2692pub struct DefaultUiCamera<'w, 's> {
2693 cameras: Query<'w, 's, (Entity, &'static Camera)>,
2694 default_cameras: Query<'w, 's, Entity, (With<Camera>, With<IsDefaultUiCamera>)>,
2695 primary_window: Query<'w, 's, Entity, With<PrimaryWindow>>,
2696}
2697
2698impl<'w, 's> DefaultUiCamera<'w, 's> {
2699 pub fn get(&self) -> Option<Entity> {
2700 self.default_cameras.single().ok().or_else(|| {
2701 // If there isn't a single camera and the query isn't empty, there is two or more cameras queried.
2702 if !self.default_cameras.is_empty() {
2703 once!(warn!("Two or more Entities with IsDefaultUiCamera found when only one Camera with this marker is allowed."));
2704 }
2705 self.cameras
2706 .iter()
2707 .filter(|(_, c)| match c.target {
2708 RenderTarget::Window(WindowRef::Primary) => true,
2709 RenderTarget::Window(WindowRef::Entity(w)) => {
2710 self.primary_window.get(w).is_ok()
2711 }
2712 _ => false,
2713 })
2714 .max_by_key(|(e, c)| (c.order, *e))
2715 .map(|(e, _)| e)
2716 })
2717 }
2718}
2719
2720/// Marker for controlling whether Ui is rendered with or without anti-aliasing
2721/// in a camera. By default, Ui is always anti-aliased.
2722///
2723/// **Note:** This does not affect text anti-aliasing. For that, use the `font_smoothing` property of the [`TextFont`](bevy_text::TextFont) component.
2724///
2725/// ```
2726/// use bevy_core_pipeline::prelude::*;
2727/// use bevy_ecs::prelude::*;
2728/// use bevy_ui::prelude::*;
2729///
2730/// fn spawn_camera(mut commands: Commands) {
2731/// commands.spawn((
2732/// Camera2d,
2733/// // This will cause all Ui in this camera to be rendered without
2734/// // anti-aliasing
2735/// UiAntiAlias::Off,
2736/// ));
2737/// }
2738/// ```
2739#[derive(Component, Clone, Copy, Default, Debug, Reflect, Eq, PartialEq)]
2740#[reflect(Component, Default, PartialEq, Clone)]
2741pub enum UiAntiAlias {
2742 /// UI will render with anti-aliasing
2743 #[default]
2744 On,
2745 /// UI will render without anti-aliasing
2746 Off,
2747}
2748
2749/// Number of shadow samples.
2750/// A larger value will result in higher quality shadows.
2751/// Default is 4, values higher than ~10 offer diminishing returns.
2752///
2753/// ```
2754/// use bevy_core_pipeline::prelude::*;
2755/// use bevy_ecs::prelude::*;
2756/// use bevy_ui::prelude::*;
2757///
2758/// fn spawn_camera(mut commands: Commands) {
2759/// commands.spawn((
2760/// Camera2d,
2761/// BoxShadowSamples(6),
2762/// ));
2763/// }
2764/// ```
2765#[derive(Component, Clone, Copy, Debug, Reflect, Eq, PartialEq)]
2766#[reflect(Component, Default, PartialEq, Clone)]
2767pub struct BoxShadowSamples(pub u32);
2768
2769impl Default for BoxShadowSamples {
2770 fn default() -> Self {
2771 Self(4)
2772 }
2773}
2774
2775/// Derived information about the camera target for this UI node.
2776#[derive(Component, Clone, Copy, Debug, Reflect, PartialEq)]
2777#[reflect(Component, Default, PartialEq, Clone)]
2778pub struct ComputedNodeTarget {
2779 pub(crate) camera: Entity,
2780 pub(crate) scale_factor: f32,
2781 pub(crate) physical_size: UVec2,
2782}
2783
2784impl Default for ComputedNodeTarget {
2785 fn default() -> Self {
2786 Self {
2787 camera: Entity::PLACEHOLDER,
2788 scale_factor: 1.,
2789 physical_size: UVec2::ZERO,
2790 }
2791 }
2792}
2793
2794impl ComputedNodeTarget {
2795 pub fn camera(&self) -> Option<Entity> {
2796 Some(self.camera).filter(|&entity| entity != Entity::PLACEHOLDER)
2797 }
2798
2799 pub const fn scale_factor(&self) -> f32 {
2800 self.scale_factor
2801 }
2802
2803 pub const fn physical_size(&self) -> UVec2 {
2804 self.physical_size
2805 }
2806
2807 pub fn logical_size(&self) -> Vec2 {
2808 self.physical_size.as_vec2() / self.scale_factor
2809 }
2810}
2811
2812/// Adds a shadow behind text
2813#[derive(Component, Copy, Clone, Debug, Reflect)]
2814#[reflect(Component, Default, Debug, Clone)]
2815pub struct TextShadow {
2816 /// Shadow displacement in logical pixels
2817 /// With a value of zero the shadow will be hidden directly behind the text
2818 pub offset: Vec2,
2819 /// Color of the shadow
2820 pub color: Color,
2821}
2822
2823impl Default for TextShadow {
2824 fn default() -> Self {
2825 Self {
2826 offset: Vec2::splat(4.),
2827 color: Color::linear_rgba(0., 0., 0., 0.75),
2828 }
2829 }
2830}