std/
path.rs

1//! Cross-platform path manipulation.
2//!
3//! This module provides two types, [`PathBuf`] and [`Path`] (akin to [`String`]
4//! and [`str`]), for working with paths abstractly. These types are thin wrappers
5//! around [`OsString`] and [`OsStr`] respectively, meaning that they work directly
6//! on strings according to the local platform's path syntax.
7//!
8//! Paths can be parsed into [`Component`]s by iterating over the structure
9//! returned by the [`components`] method on [`Path`]. [`Component`]s roughly
10//! correspond to the substrings between path separators (`/` or `\`). You can
11//! reconstruct an equivalent path from components with the [`push`] method on
12//! [`PathBuf`]; note that the paths may differ syntactically by the
13//! normalization described in the documentation for the [`components`] method.
14//!
15//! ## Case sensitivity
16//!
17//! Unless otherwise indicated path methods that do not access the filesystem,
18//! such as [`Path::starts_with`] and [`Path::ends_with`], are case sensitive no
19//! matter the platform or filesystem. An exception to this is made for Windows
20//! drive letters.
21//!
22//! ## Simple usage
23//!
24//! Path manipulation includes both parsing components from slices and building
25//! new owned paths.
26//!
27//! To parse a path, you can create a [`Path`] slice from a [`str`]
28//! slice and start asking questions:
29//!
30//! ```
31//! use std::path::Path;
32//! use std::ffi::OsStr;
33//!
34//! let path = Path::new("/tmp/foo/bar.txt");
35//!
36//! let parent = path.parent();
37//! assert_eq!(parent, Some(Path::new("/tmp/foo")));
38//!
39//! let file_stem = path.file_stem();
40//! assert_eq!(file_stem, Some(OsStr::new("bar")));
41//!
42//! let extension = path.extension();
43//! assert_eq!(extension, Some(OsStr::new("txt")));
44//! ```
45//!
46//! To build or modify paths, use [`PathBuf`]:
47//!
48//! ```
49//! use std::path::PathBuf;
50//!
51//! // This way works...
52//! let mut path = PathBuf::from("c:\\");
53//!
54//! path.push("windows");
55//! path.push("system32");
56//!
57//! path.set_extension("dll");
58//!
59//! // ... but push is best used if you don't know everything up
60//! // front. If you do, this way is better:
61//! let path: PathBuf = ["c:\\", "windows", "system32.dll"].iter().collect();
62//! ```
63//!
64//! [`components`]: Path::components
65//! [`push`]: PathBuf::push
66
67#![stable(feature = "rust1", since = "1.0.0")]
68#![deny(unsafe_op_in_unsafe_fn)]
69
70use core::clone::CloneToUninit;
71
72use crate::borrow::{Borrow, Cow};
73use crate::collections::TryReserveError;
74use crate::error::Error;
75use crate::ffi::{OsStr, OsString, os_str};
76use crate::hash::{Hash, Hasher};
77use crate::iter::FusedIterator;
78use crate::ops::{self, Deref};
79use crate::rc::Rc;
80use crate::str::FromStr;
81use crate::sync::Arc;
82use crate::sys::path::{MAIN_SEP_STR, is_sep_byte, is_verbatim_sep, parse_prefix};
83use crate::{cmp, fmt, fs, io, sys};
84
85////////////////////////////////////////////////////////////////////////////////
86// GENERAL NOTES
87////////////////////////////////////////////////////////////////////////////////
88//
89// Parsing in this module is done by directly transmuting OsStr to [u8] slices,
90// taking advantage of the fact that OsStr always encodes ASCII characters
91// as-is.  Eventually, this transmutation should be replaced by direct uses of
92// OsStr APIs for parsing, but it will take a while for those to become
93// available.
94
95////////////////////////////////////////////////////////////////////////////////
96// Windows Prefixes
97////////////////////////////////////////////////////////////////////////////////
98
99/// Windows path prefixes, e.g., `C:` or `\\server\share`.
100///
101/// Windows uses a variety of path prefix styles, including references to drive
102/// volumes (like `C:`), network shared folders (like `\\server\share`), and
103/// others. In addition, some path prefixes are "verbatim" (i.e., prefixed with
104/// `\\?\`), in which case `/` is *not* treated as a separator and essentially
105/// no normalization is performed.
106///
107/// # Examples
108///
109/// ```
110/// use std::path::{Component, Path, Prefix};
111/// use std::path::Prefix::*;
112/// use std::ffi::OsStr;
113///
114/// fn get_path_prefix(s: &str) -> Prefix<'_> {
115///     let path = Path::new(s);
116///     match path.components().next().unwrap() {
117///         Component::Prefix(prefix_component) => prefix_component.kind(),
118///         _ => panic!(),
119///     }
120/// }
121///
122/// # if cfg!(windows) {
123/// assert_eq!(Verbatim(OsStr::new("pictures")),
124///            get_path_prefix(r"\\?\pictures\kittens"));
125/// assert_eq!(VerbatimUNC(OsStr::new("server"), OsStr::new("share")),
126///            get_path_prefix(r"\\?\UNC\server\share"));
127/// assert_eq!(VerbatimDisk(b'C'), get_path_prefix(r"\\?\c:\"));
128/// assert_eq!(DeviceNS(OsStr::new("BrainInterface")),
129///            get_path_prefix(r"\\.\BrainInterface"));
130/// assert_eq!(UNC(OsStr::new("server"), OsStr::new("share")),
131///            get_path_prefix(r"\\server\share"));
132/// assert_eq!(Disk(b'C'), get_path_prefix(r"C:\Users\Rust\Pictures\Ferris"));
133/// # }
134/// ```
135#[derive(Copy, Clone, Debug, Hash, PartialOrd, Ord, PartialEq, Eq)]
136#[stable(feature = "rust1", since = "1.0.0")]
137pub enum Prefix<'a> {
138    /// Verbatim prefix, e.g., `\\?\cat_pics`.
139    ///
140    /// Verbatim prefixes consist of `\\?\` immediately followed by the given
141    /// component.
142    #[stable(feature = "rust1", since = "1.0.0")]
143    Verbatim(#[stable(feature = "rust1", since = "1.0.0")] &'a OsStr),
144
145    /// Verbatim prefix using Windows' _**U**niform **N**aming **C**onvention_,
146    /// e.g., `\\?\UNC\server\share`.
147    ///
148    /// Verbatim UNC prefixes consist of `\\?\UNC\` immediately followed by the
149    /// server's hostname and a share name.
150    #[stable(feature = "rust1", since = "1.0.0")]
151    VerbatimUNC(
152        #[stable(feature = "rust1", since = "1.0.0")] &'a OsStr,
153        #[stable(feature = "rust1", since = "1.0.0")] &'a OsStr,
154    ),
155
156    /// Verbatim disk prefix, e.g., `\\?\C:`.
157    ///
158    /// Verbatim disk prefixes consist of `\\?\` immediately followed by the
159    /// drive letter and `:`.
160    #[stable(feature = "rust1", since = "1.0.0")]
161    VerbatimDisk(#[stable(feature = "rust1", since = "1.0.0")] u8),
162
163    /// Device namespace prefix, e.g., `\\.\COM42`.
164    ///
165    /// Device namespace prefixes consist of `\\.\` (possibly using `/`
166    /// instead of `\`), immediately followed by the device name.
167    #[stable(feature = "rust1", since = "1.0.0")]
168    DeviceNS(#[stable(feature = "rust1", since = "1.0.0")] &'a OsStr),
169
170    /// Prefix using Windows' _**U**niform **N**aming **C**onvention_, e.g.
171    /// `\\server\share`.
172    ///
173    /// UNC prefixes consist of the server's hostname and a share name.
174    #[stable(feature = "rust1", since = "1.0.0")]
175    UNC(
176        #[stable(feature = "rust1", since = "1.0.0")] &'a OsStr,
177        #[stable(feature = "rust1", since = "1.0.0")] &'a OsStr,
178    ),
179
180    /// Prefix `C:` for the given disk drive.
181    #[stable(feature = "rust1", since = "1.0.0")]
182    Disk(#[stable(feature = "rust1", since = "1.0.0")] u8),
183}
184
185impl<'a> Prefix<'a> {
186    #[inline]
187    fn len(&self) -> usize {
188        use self::Prefix::*;
189        fn os_str_len(s: &OsStr) -> usize {
190            s.as_encoded_bytes().len()
191        }
192        match *self {
193            Verbatim(x) => 4 + os_str_len(x),
194            VerbatimUNC(x, y) => {
195                8 + os_str_len(x) + if os_str_len(y) > 0 { 1 + os_str_len(y) } else { 0 }
196            }
197            VerbatimDisk(_) => 6,
198            UNC(x, y) => 2 + os_str_len(x) + if os_str_len(y) > 0 { 1 + os_str_len(y) } else { 0 },
199            DeviceNS(x) => 4 + os_str_len(x),
200            Disk(_) => 2,
201        }
202    }
203
204    /// Determines if the prefix is verbatim, i.e., begins with `\\?\`.
205    ///
206    /// # Examples
207    ///
208    /// ```
209    /// use std::path::Prefix::*;
210    /// use std::ffi::OsStr;
211    ///
212    /// assert!(Verbatim(OsStr::new("pictures")).is_verbatim());
213    /// assert!(VerbatimUNC(OsStr::new("server"), OsStr::new("share")).is_verbatim());
214    /// assert!(VerbatimDisk(b'C').is_verbatim());
215    /// assert!(!DeviceNS(OsStr::new("BrainInterface")).is_verbatim());
216    /// assert!(!UNC(OsStr::new("server"), OsStr::new("share")).is_verbatim());
217    /// assert!(!Disk(b'C').is_verbatim());
218    /// ```
219    #[inline]
220    #[must_use]
221    #[stable(feature = "rust1", since = "1.0.0")]
222    pub fn is_verbatim(&self) -> bool {
223        use self::Prefix::*;
224        matches!(*self, Verbatim(_) | VerbatimDisk(_) | VerbatimUNC(..))
225    }
226
227    #[inline]
228    fn is_drive(&self) -> bool {
229        matches!(*self, Prefix::Disk(_))
230    }
231
232    #[inline]
233    fn has_implicit_root(&self) -> bool {
234        !self.is_drive()
235    }
236}
237
238////////////////////////////////////////////////////////////////////////////////
239// Exposed parsing helpers
240////////////////////////////////////////////////////////////////////////////////
241
242/// Determines whether the character is one of the permitted path
243/// separators for the current platform.
244///
245/// # Examples
246///
247/// ```
248/// use std::path;
249///
250/// assert!(path::is_separator('/')); // '/' works for both Unix and Windows
251/// assert!(!path::is_separator('❤'));
252/// ```
253#[must_use]
254#[stable(feature = "rust1", since = "1.0.0")]
255pub fn is_separator(c: char) -> bool {
256    c.is_ascii() && is_sep_byte(c as u8)
257}
258
259/// The primary separator of path components for the current platform.
260///
261/// For example, `/` on Unix and `\` on Windows.
262#[stable(feature = "rust1", since = "1.0.0")]
263#[cfg_attr(not(test), rustc_diagnostic_item = "path_main_separator")]
264pub const MAIN_SEPARATOR: char = crate::sys::path::MAIN_SEP;
265
266/// The primary separator of path components for the current platform.
267///
268/// For example, `/` on Unix and `\` on Windows.
269#[stable(feature = "main_separator_str", since = "1.68.0")]
270pub const MAIN_SEPARATOR_STR: &str = crate::sys::path::MAIN_SEP_STR;
271
272////////////////////////////////////////////////////////////////////////////////
273// Misc helpers
274////////////////////////////////////////////////////////////////////////////////
275
276// Iterate through `iter` while it matches `prefix`; return `None` if `prefix`
277// is not a prefix of `iter`, otherwise return `Some(iter_after_prefix)` giving
278// `iter` after having exhausted `prefix`.
279fn iter_after<'a, 'b, I, J>(mut iter: I, mut prefix: J) -> Option<I>
280where
281    I: Iterator<Item = Component<'a>> + Clone,
282    J: Iterator<Item = Component<'b>>,
283{
284    loop {
285        let mut iter_next = iter.clone();
286        match (iter_next.next(), prefix.next()) {
287            (Some(ref x), Some(ref y)) if x == y => (),
288            (Some(_), Some(_)) => return None,
289            (Some(_), None) => return Some(iter),
290            (None, None) => return Some(iter),
291            (None, Some(_)) => return None,
292        }
293        iter = iter_next;
294    }
295}
296
297////////////////////////////////////////////////////////////////////////////////
298// Cross-platform, iterator-independent parsing
299////////////////////////////////////////////////////////////////////////////////
300
301/// Says whether the first byte after the prefix is a separator.
302fn has_physical_root(s: &[u8], prefix: Option<Prefix<'_>>) -> bool {
303    let path = if let Some(p) = prefix { &s[p.len()..] } else { s };
304    !path.is_empty() && is_sep_byte(path[0])
305}
306
307// basic workhorse for splitting stem and extension
308fn rsplit_file_at_dot(file: &OsStr) -> (Option<&OsStr>, Option<&OsStr>) {
309    if file.as_encoded_bytes() == b".." {
310        return (Some(file), None);
311    }
312
313    // The unsafety here stems from converting between &OsStr and &[u8]
314    // and back. This is safe to do because (1) we only look at ASCII
315    // contents of the encoding and (2) new &OsStr values are produced
316    // only from ASCII-bounded slices of existing &OsStr values.
317    let mut iter = file.as_encoded_bytes().rsplitn(2, |b| *b == b'.');
318    let after = iter.next();
319    let before = iter.next();
320    if before == Some(b"") {
321        (Some(file), None)
322    } else {
323        unsafe {
324            (
325                before.map(|s| OsStr::from_encoded_bytes_unchecked(s)),
326                after.map(|s| OsStr::from_encoded_bytes_unchecked(s)),
327            )
328        }
329    }
330}
331
332fn split_file_at_dot(file: &OsStr) -> (&OsStr, Option<&OsStr>) {
333    let slice = file.as_encoded_bytes();
334    if slice == b".." {
335        return (file, None);
336    }
337
338    // The unsafety here stems from converting between &OsStr and &[u8]
339    // and back. This is safe to do because (1) we only look at ASCII
340    // contents of the encoding and (2) new &OsStr values are produced
341    // only from ASCII-bounded slices of existing &OsStr values.
342    let i = match slice[1..].iter().position(|b| *b == b'.') {
343        Some(i) => i + 1,
344        None => return (file, None),
345    };
346    let before = &slice[..i];
347    let after = &slice[i + 1..];
348    unsafe {
349        (
350            OsStr::from_encoded_bytes_unchecked(before),
351            Some(OsStr::from_encoded_bytes_unchecked(after)),
352        )
353    }
354}
355
356/// Checks whether the string is valid as a file extension, or panics otherwise.
357fn validate_extension(extension: &OsStr) {
358    for &b in extension.as_encoded_bytes() {
359        if is_sep_byte(b) {
360            panic!("extension cannot contain path separators: {extension:?}");
361        }
362    }
363}
364
365////////////////////////////////////////////////////////////////////////////////
366// The core iterators
367////////////////////////////////////////////////////////////////////////////////
368
369/// Component parsing works by a double-ended state machine; the cursors at the
370/// front and back of the path each keep track of what parts of the path have
371/// been consumed so far.
372///
373/// Going front to back, a path is made up of a prefix, a starting
374/// directory component, and a body (of normal components)
375#[derive(Copy, Clone, PartialEq, PartialOrd, Debug)]
376enum State {
377    Prefix = 0,   // c:
378    StartDir = 1, // / or . or nothing
379    Body = 2,     // foo/bar/baz
380    Done = 3,
381}
382
383/// A structure wrapping a Windows path prefix as well as its unparsed string
384/// representation.
385///
386/// In addition to the parsed [`Prefix`] information returned by [`kind`],
387/// `PrefixComponent` also holds the raw and unparsed [`OsStr`] slice,
388/// returned by [`as_os_str`].
389///
390/// Instances of this `struct` can be obtained by matching against the
391/// [`Prefix` variant] on [`Component`].
392///
393/// Does not occur on Unix.
394///
395/// # Examples
396///
397/// ```
398/// # if cfg!(windows) {
399/// use std::path::{Component, Path, Prefix};
400/// use std::ffi::OsStr;
401///
402/// let path = Path::new(r"c:\you\later\");
403/// match path.components().next().unwrap() {
404///     Component::Prefix(prefix_component) => {
405///         assert_eq!(Prefix::Disk(b'C'), prefix_component.kind());
406///         assert_eq!(OsStr::new("c:"), prefix_component.as_os_str());
407///     }
408///     _ => unreachable!(),
409/// }
410/// # }
411/// ```
412///
413/// [`as_os_str`]: PrefixComponent::as_os_str
414/// [`kind`]: PrefixComponent::kind
415/// [`Prefix` variant]: Component::Prefix
416#[stable(feature = "rust1", since = "1.0.0")]
417#[derive(Copy, Clone, Eq, Debug)]
418pub struct PrefixComponent<'a> {
419    /// The prefix as an unparsed `OsStr` slice.
420    raw: &'a OsStr,
421
422    /// The parsed prefix data.
423    parsed: Prefix<'a>,
424}
425
426impl<'a> PrefixComponent<'a> {
427    /// Returns the parsed prefix data.
428    ///
429    /// See [`Prefix`]'s documentation for more information on the different
430    /// kinds of prefixes.
431    #[stable(feature = "rust1", since = "1.0.0")]
432    #[must_use]
433    #[inline]
434    pub fn kind(&self) -> Prefix<'a> {
435        self.parsed
436    }
437
438    /// Returns the raw [`OsStr`] slice for this prefix.
439    #[stable(feature = "rust1", since = "1.0.0")]
440    #[must_use]
441    #[inline]
442    pub fn as_os_str(&self) -> &'a OsStr {
443        self.raw
444    }
445}
446
447#[stable(feature = "rust1", since = "1.0.0")]
448impl<'a> PartialEq for PrefixComponent<'a> {
449    #[inline]
450    fn eq(&self, other: &PrefixComponent<'a>) -> bool {
451        self.parsed == other.parsed
452    }
453}
454
455#[stable(feature = "rust1", since = "1.0.0")]
456impl<'a> PartialOrd for PrefixComponent<'a> {
457    #[inline]
458    fn partial_cmp(&self, other: &PrefixComponent<'a>) -> Option<cmp::Ordering> {
459        PartialOrd::partial_cmp(&self.parsed, &other.parsed)
460    }
461}
462
463#[stable(feature = "rust1", since = "1.0.0")]
464impl Ord for PrefixComponent<'_> {
465    #[inline]
466    fn cmp(&self, other: &Self) -> cmp::Ordering {
467        Ord::cmp(&self.parsed, &other.parsed)
468    }
469}
470
471#[stable(feature = "rust1", since = "1.0.0")]
472impl Hash for PrefixComponent<'_> {
473    fn hash<H: Hasher>(&self, h: &mut H) {
474        self.parsed.hash(h);
475    }
476}
477
478/// A single component of a path.
479///
480/// A `Component` roughly corresponds to a substring between path separators
481/// (`/` or `\`).
482///
483/// This `enum` is created by iterating over [`Components`], which in turn is
484/// created by the [`components`](Path::components) method on [`Path`].
485///
486/// # Examples
487///
488/// ```rust
489/// use std::path::{Component, Path};
490///
491/// let path = Path::new("/tmp/foo/bar.txt");
492/// let components = path.components().collect::<Vec<_>>();
493/// assert_eq!(&components, &[
494///     Component::RootDir,
495///     Component::Normal("tmp".as_ref()),
496///     Component::Normal("foo".as_ref()),
497///     Component::Normal("bar.txt".as_ref()),
498/// ]);
499/// ```
500#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash, Debug)]
501#[stable(feature = "rust1", since = "1.0.0")]
502pub enum Component<'a> {
503    /// A Windows path prefix, e.g., `C:` or `\\server\share`.
504    ///
505    /// There is a large variety of prefix types, see [`Prefix`]'s documentation
506    /// for more.
507    ///
508    /// Does not occur on Unix.
509    #[stable(feature = "rust1", since = "1.0.0")]
510    Prefix(#[stable(feature = "rust1", since = "1.0.0")] PrefixComponent<'a>),
511
512    /// The root directory component, appears after any prefix and before anything else.
513    ///
514    /// It represents a separator that designates that a path starts from root.
515    #[stable(feature = "rust1", since = "1.0.0")]
516    RootDir,
517
518    /// A reference to the current directory, i.e., `.`.
519    #[stable(feature = "rust1", since = "1.0.0")]
520    CurDir,
521
522    /// A reference to the parent directory, i.e., `..`.
523    #[stable(feature = "rust1", since = "1.0.0")]
524    ParentDir,
525
526    /// A normal component, e.g., `a` and `b` in `a/b`.
527    ///
528    /// This variant is the most common one, it represents references to files
529    /// or directories.
530    #[stable(feature = "rust1", since = "1.0.0")]
531    Normal(#[stable(feature = "rust1", since = "1.0.0")] &'a OsStr),
532}
533
534impl<'a> Component<'a> {
535    /// Extracts the underlying [`OsStr`] slice.
536    ///
537    /// # Examples
538    ///
539    /// ```
540    /// use std::path::Path;
541    ///
542    /// let path = Path::new("./tmp/foo/bar.txt");
543    /// let components: Vec<_> = path.components().map(|comp| comp.as_os_str()).collect();
544    /// assert_eq!(&components, &[".", "tmp", "foo", "bar.txt"]);
545    /// ```
546    #[must_use = "`self` will be dropped if the result is not used"]
547    #[stable(feature = "rust1", since = "1.0.0")]
548    pub fn as_os_str(self) -> &'a OsStr {
549        match self {
550            Component::Prefix(p) => p.as_os_str(),
551            Component::RootDir => OsStr::new(MAIN_SEP_STR),
552            Component::CurDir => OsStr::new("."),
553            Component::ParentDir => OsStr::new(".."),
554            Component::Normal(path) => path,
555        }
556    }
557}
558
559#[stable(feature = "rust1", since = "1.0.0")]
560impl AsRef<OsStr> for Component<'_> {
561    #[inline]
562    fn as_ref(&self) -> &OsStr {
563        self.as_os_str()
564    }
565}
566
567#[stable(feature = "path_component_asref", since = "1.25.0")]
568impl AsRef<Path> for Component<'_> {
569    #[inline]
570    fn as_ref(&self) -> &Path {
571        self.as_os_str().as_ref()
572    }
573}
574
575/// An iterator over the [`Component`]s of a [`Path`].
576///
577/// This `struct` is created by the [`components`] method on [`Path`].
578/// See its documentation for more.
579///
580/// # Examples
581///
582/// ```
583/// use std::path::Path;
584///
585/// let path = Path::new("/tmp/foo/bar.txt");
586///
587/// for component in path.components() {
588///     println!("{component:?}");
589/// }
590/// ```
591///
592/// [`components`]: Path::components
593#[derive(Clone)]
594#[must_use = "iterators are lazy and do nothing unless consumed"]
595#[stable(feature = "rust1", since = "1.0.0")]
596pub struct Components<'a> {
597    // The path left to parse components from
598    path: &'a [u8],
599
600    // The prefix as it was originally parsed, if any
601    prefix: Option<Prefix<'a>>,
602
603    // true if path *physically* has a root separator; for most Windows
604    // prefixes, it may have a "logical" root separator for the purposes of
605    // normalization, e.g., \\server\share == \\server\share\.
606    has_physical_root: bool,
607
608    // The iterator is double-ended, and these two states keep track of what has
609    // been produced from either end
610    front: State,
611    back: State,
612}
613
614/// An iterator over the [`Component`]s of a [`Path`], as [`OsStr`] slices.
615///
616/// This `struct` is created by the [`iter`] method on [`Path`].
617/// See its documentation for more.
618///
619/// [`iter`]: Path::iter
620#[derive(Clone)]
621#[must_use = "iterators are lazy and do nothing unless consumed"]
622#[stable(feature = "rust1", since = "1.0.0")]
623pub struct Iter<'a> {
624    inner: Components<'a>,
625}
626
627#[stable(feature = "path_components_debug", since = "1.13.0")]
628impl fmt::Debug for Components<'_> {
629    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
630        struct DebugHelper<'a>(&'a Path);
631
632        impl fmt::Debug for DebugHelper<'_> {
633            fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
634                f.debug_list().entries(self.0.components()).finish()
635            }
636        }
637
638        f.debug_tuple("Components").field(&DebugHelper(self.as_path())).finish()
639    }
640}
641
642impl<'a> Components<'a> {
643    // how long is the prefix, if any?
644    #[inline]
645    fn prefix_len(&self) -> usize {
646        self.prefix.as_ref().map(Prefix::len).unwrap_or(0)
647    }
648
649    #[inline]
650    fn prefix_verbatim(&self) -> bool {
651        self.prefix.as_ref().map(Prefix::is_verbatim).unwrap_or(false)
652    }
653
654    /// how much of the prefix is left from the point of view of iteration?
655    #[inline]
656    fn prefix_remaining(&self) -> usize {
657        if self.front == State::Prefix { self.prefix_len() } else { 0 }
658    }
659
660    // Given the iteration so far, how much of the pre-State::Body path is left?
661    #[inline]
662    fn len_before_body(&self) -> usize {
663        let root = if self.front <= State::StartDir && self.has_physical_root { 1 } else { 0 };
664        let cur_dir = if self.front <= State::StartDir && self.include_cur_dir() { 1 } else { 0 };
665        self.prefix_remaining() + root + cur_dir
666    }
667
668    // is the iteration complete?
669    #[inline]
670    fn finished(&self) -> bool {
671        self.front == State::Done || self.back == State::Done || self.front > self.back
672    }
673
674    #[inline]
675    fn is_sep_byte(&self, b: u8) -> bool {
676        if self.prefix_verbatim() { is_verbatim_sep(b) } else { is_sep_byte(b) }
677    }
678
679    /// Extracts a slice corresponding to the portion of the path remaining for iteration.
680    ///
681    /// # Examples
682    ///
683    /// ```
684    /// use std::path::Path;
685    ///
686    /// let mut components = Path::new("/tmp/foo/bar.txt").components();
687    /// components.next();
688    /// components.next();
689    ///
690    /// assert_eq!(Path::new("foo/bar.txt"), components.as_path());
691    /// ```
692    #[must_use]
693    #[stable(feature = "rust1", since = "1.0.0")]
694    pub fn as_path(&self) -> &'a Path {
695        let mut comps = self.clone();
696        if comps.front == State::Body {
697            comps.trim_left();
698        }
699        if comps.back == State::Body {
700            comps.trim_right();
701        }
702        unsafe { Path::from_u8_slice(comps.path) }
703    }
704
705    /// Is the *original* path rooted?
706    fn has_root(&self) -> bool {
707        if self.has_physical_root {
708            return true;
709        }
710        if let Some(p) = self.prefix {
711            if p.has_implicit_root() {
712                return true;
713            }
714        }
715        false
716    }
717
718    /// Should the normalized path include a leading . ?
719    fn include_cur_dir(&self) -> bool {
720        if self.has_root() {
721            return false;
722        }
723        let mut iter = self.path[self.prefix_remaining()..].iter();
724        match (iter.next(), iter.next()) {
725            (Some(&b'.'), None) => true,
726            (Some(&b'.'), Some(&b)) => self.is_sep_byte(b),
727            _ => false,
728        }
729    }
730
731    // parse a given byte sequence following the OsStr encoding into the
732    // corresponding path component
733    unsafe fn parse_single_component<'b>(&self, comp: &'b [u8]) -> Option<Component<'b>> {
734        match comp {
735            b"." if self.prefix_verbatim() => Some(Component::CurDir),
736            b"." => None, // . components are normalized away, except at
737            // the beginning of a path, which is treated
738            // separately via `include_cur_dir`
739            b".." => Some(Component::ParentDir),
740            b"" => None,
741            _ => Some(Component::Normal(unsafe { OsStr::from_encoded_bytes_unchecked(comp) })),
742        }
743    }
744
745    // parse a component from the left, saying how many bytes to consume to
746    // remove the component
747    fn parse_next_component(&self) -> (usize, Option<Component<'a>>) {
748        debug_assert!(self.front == State::Body);
749        let (extra, comp) = match self.path.iter().position(|b| self.is_sep_byte(*b)) {
750            None => (0, self.path),
751            Some(i) => (1, &self.path[..i]),
752        };
753        // SAFETY: `comp` is a valid substring, since it is split on a separator.
754        (comp.len() + extra, unsafe { self.parse_single_component(comp) })
755    }
756
757    // parse a component from the right, saying how many bytes to consume to
758    // remove the component
759    fn parse_next_component_back(&self) -> (usize, Option<Component<'a>>) {
760        debug_assert!(self.back == State::Body);
761        let start = self.len_before_body();
762        let (extra, comp) = match self.path[start..].iter().rposition(|b| self.is_sep_byte(*b)) {
763            None => (0, &self.path[start..]),
764            Some(i) => (1, &self.path[start + i + 1..]),
765        };
766        // SAFETY: `comp` is a valid substring, since it is split on a separator.
767        (comp.len() + extra, unsafe { self.parse_single_component(comp) })
768    }
769
770    // trim away repeated separators (i.e., empty components) on the left
771    fn trim_left(&mut self) {
772        while !self.path.is_empty() {
773            let (size, comp) = self.parse_next_component();
774            if comp.is_some() {
775                return;
776            } else {
777                self.path = &self.path[size..];
778            }
779        }
780    }
781
782    // trim away repeated separators (i.e., empty components) on the right
783    fn trim_right(&mut self) {
784        while self.path.len() > self.len_before_body() {
785            let (size, comp) = self.parse_next_component_back();
786            if comp.is_some() {
787                return;
788            } else {
789                self.path = &self.path[..self.path.len() - size];
790            }
791        }
792    }
793}
794
795#[stable(feature = "rust1", since = "1.0.0")]
796impl AsRef<Path> for Components<'_> {
797    #[inline]
798    fn as_ref(&self) -> &Path {
799        self.as_path()
800    }
801}
802
803#[stable(feature = "rust1", since = "1.0.0")]
804impl AsRef<OsStr> for Components<'_> {
805    #[inline]
806    fn as_ref(&self) -> &OsStr {
807        self.as_path().as_os_str()
808    }
809}
810
811#[stable(feature = "path_iter_debug", since = "1.13.0")]
812impl fmt::Debug for Iter<'_> {
813    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
814        struct DebugHelper<'a>(&'a Path);
815
816        impl fmt::Debug for DebugHelper<'_> {
817            fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
818                f.debug_list().entries(self.0.iter()).finish()
819            }
820        }
821
822        f.debug_tuple("Iter").field(&DebugHelper(self.as_path())).finish()
823    }
824}
825
826impl<'a> Iter<'a> {
827    /// Extracts a slice corresponding to the portion of the path remaining for iteration.
828    ///
829    /// # Examples
830    ///
831    /// ```
832    /// use std::path::Path;
833    ///
834    /// let mut iter = Path::new("/tmp/foo/bar.txt").iter();
835    /// iter.next();
836    /// iter.next();
837    ///
838    /// assert_eq!(Path::new("foo/bar.txt"), iter.as_path());
839    /// ```
840    #[stable(feature = "rust1", since = "1.0.0")]
841    #[must_use]
842    #[inline]
843    pub fn as_path(&self) -> &'a Path {
844        self.inner.as_path()
845    }
846}
847
848#[stable(feature = "rust1", since = "1.0.0")]
849impl AsRef<Path> for Iter<'_> {
850    #[inline]
851    fn as_ref(&self) -> &Path {
852        self.as_path()
853    }
854}
855
856#[stable(feature = "rust1", since = "1.0.0")]
857impl AsRef<OsStr> for Iter<'_> {
858    #[inline]
859    fn as_ref(&self) -> &OsStr {
860        self.as_path().as_os_str()
861    }
862}
863
864#[stable(feature = "rust1", since = "1.0.0")]
865impl<'a> Iterator for Iter<'a> {
866    type Item = &'a OsStr;
867
868    #[inline]
869    fn next(&mut self) -> Option<&'a OsStr> {
870        self.inner.next().map(Component::as_os_str)
871    }
872}
873
874#[stable(feature = "rust1", since = "1.0.0")]
875impl<'a> DoubleEndedIterator for Iter<'a> {
876    #[inline]
877    fn next_back(&mut self) -> Option<&'a OsStr> {
878        self.inner.next_back().map(Component::as_os_str)
879    }
880}
881
882#[stable(feature = "fused", since = "1.26.0")]
883impl FusedIterator for Iter<'_> {}
884
885#[stable(feature = "rust1", since = "1.0.0")]
886impl<'a> Iterator for Components<'a> {
887    type Item = Component<'a>;
888
889    fn next(&mut self) -> Option<Component<'a>> {
890        while !self.finished() {
891            match self.front {
892                State::Prefix if self.prefix_len() > 0 => {
893                    self.front = State::StartDir;
894                    debug_assert!(self.prefix_len() <= self.path.len());
895                    let raw = &self.path[..self.prefix_len()];
896                    self.path = &self.path[self.prefix_len()..];
897                    return Some(Component::Prefix(PrefixComponent {
898                        raw: unsafe { OsStr::from_encoded_bytes_unchecked(raw) },
899                        parsed: self.prefix.unwrap(),
900                    }));
901                }
902                State::Prefix => {
903                    self.front = State::StartDir;
904                }
905                State::StartDir => {
906                    self.front = State::Body;
907                    if self.has_physical_root {
908                        debug_assert!(!self.path.is_empty());
909                        self.path = &self.path[1..];
910                        return Some(Component::RootDir);
911                    } else if let Some(p) = self.prefix {
912                        if p.has_implicit_root() && !p.is_verbatim() {
913                            return Some(Component::RootDir);
914                        }
915                    } else if self.include_cur_dir() {
916                        debug_assert!(!self.path.is_empty());
917                        self.path = &self.path[1..];
918                        return Some(Component::CurDir);
919                    }
920                }
921                State::Body if !self.path.is_empty() => {
922                    let (size, comp) = self.parse_next_component();
923                    self.path = &self.path[size..];
924                    if comp.is_some() {
925                        return comp;
926                    }
927                }
928                State::Body => {
929                    self.front = State::Done;
930                }
931                State::Done => unreachable!(),
932            }
933        }
934        None
935    }
936}
937
938#[stable(feature = "rust1", since = "1.0.0")]
939impl<'a> DoubleEndedIterator for Components<'a> {
940    fn next_back(&mut self) -> Option<Component<'a>> {
941        while !self.finished() {
942            match self.back {
943                State::Body if self.path.len() > self.len_before_body() => {
944                    let (size, comp) = self.parse_next_component_back();
945                    self.path = &self.path[..self.path.len() - size];
946                    if comp.is_some() {
947                        return comp;
948                    }
949                }
950                State::Body => {
951                    self.back = State::StartDir;
952                }
953                State::StartDir => {
954                    self.back = State::Prefix;
955                    if self.has_physical_root {
956                        self.path = &self.path[..self.path.len() - 1];
957                        return Some(Component::RootDir);
958                    } else if let Some(p) = self.prefix {
959                        if p.has_implicit_root() && !p.is_verbatim() {
960                            return Some(Component::RootDir);
961                        }
962                    } else if self.include_cur_dir() {
963                        self.path = &self.path[..self.path.len() - 1];
964                        return Some(Component::CurDir);
965                    }
966                }
967                State::Prefix if self.prefix_len() > 0 => {
968                    self.back = State::Done;
969                    return Some(Component::Prefix(PrefixComponent {
970                        raw: unsafe { OsStr::from_encoded_bytes_unchecked(self.path) },
971                        parsed: self.prefix.unwrap(),
972                    }));
973                }
974                State::Prefix => {
975                    self.back = State::Done;
976                    return None;
977                }
978                State::Done => unreachable!(),
979            }
980        }
981        None
982    }
983}
984
985#[stable(feature = "fused", since = "1.26.0")]
986impl FusedIterator for Components<'_> {}
987
988#[stable(feature = "rust1", since = "1.0.0")]
989impl<'a> PartialEq for Components<'a> {
990    #[inline]
991    fn eq(&self, other: &Components<'a>) -> bool {
992        let Components { path: _, front: _, back: _, has_physical_root: _, prefix: _ } = self;
993
994        // Fast path for exact matches, e.g. for hashmap lookups.
995        // Don't explicitly compare the prefix or has_physical_root fields since they'll
996        // either be covered by the `path` buffer or are only relevant for `prefix_verbatim()`.
997        if self.path.len() == other.path.len()
998            && self.front == other.front
999            && self.back == State::Body
1000            && other.back == State::Body
1001            && self.prefix_verbatim() == other.prefix_verbatim()
1002        {
1003            // possible future improvement: this could bail out earlier if there were a
1004            // reverse memcmp/bcmp comparing back to front
1005            if self.path == other.path {
1006                return true;
1007            }
1008        }
1009
1010        // compare back to front since absolute paths often share long prefixes
1011        Iterator::eq(self.clone().rev(), other.clone().rev())
1012    }
1013}
1014
1015#[stable(feature = "rust1", since = "1.0.0")]
1016impl Eq for Components<'_> {}
1017
1018#[stable(feature = "rust1", since = "1.0.0")]
1019impl<'a> PartialOrd for Components<'a> {
1020    #[inline]
1021    fn partial_cmp(&self, other: &Components<'a>) -> Option<cmp::Ordering> {
1022        Some(compare_components(self.clone(), other.clone()))
1023    }
1024}
1025
1026#[stable(feature = "rust1", since = "1.0.0")]
1027impl Ord for Components<'_> {
1028    #[inline]
1029    fn cmp(&self, other: &Self) -> cmp::Ordering {
1030        compare_components(self.clone(), other.clone())
1031    }
1032}
1033
1034fn compare_components(mut left: Components<'_>, mut right: Components<'_>) -> cmp::Ordering {
1035    // Fast path for long shared prefixes
1036    //
1037    // - compare raw bytes to find first mismatch
1038    // - backtrack to find separator before mismatch to avoid ambiguous parsings of '.' or '..' characters
1039    // - if found update state to only do a component-wise comparison on the remainder,
1040    //   otherwise do it on the full path
1041    //
1042    // The fast path isn't taken for paths with a PrefixComponent to avoid backtracking into
1043    // the middle of one
1044    if left.prefix.is_none() && right.prefix.is_none() && left.front == right.front {
1045        // possible future improvement: a [u8]::first_mismatch simd implementation
1046        let first_difference = match left.path.iter().zip(right.path).position(|(&a, &b)| a != b) {
1047            None if left.path.len() == right.path.len() => return cmp::Ordering::Equal,
1048            None => left.path.len().min(right.path.len()),
1049            Some(diff) => diff,
1050        };
1051
1052        if let Some(previous_sep) =
1053            left.path[..first_difference].iter().rposition(|&b| left.is_sep_byte(b))
1054        {
1055            let mismatched_component_start = previous_sep + 1;
1056            left.path = &left.path[mismatched_component_start..];
1057            left.front = State::Body;
1058            right.path = &right.path[mismatched_component_start..];
1059            right.front = State::Body;
1060        }
1061    }
1062
1063    Iterator::cmp(left, right)
1064}
1065
1066/// An iterator over [`Path`] and its ancestors.
1067///
1068/// This `struct` is created by the [`ancestors`] method on [`Path`].
1069/// See its documentation for more.
1070///
1071/// # Examples
1072///
1073/// ```
1074/// use std::path::Path;
1075///
1076/// let path = Path::new("/foo/bar");
1077///
1078/// for ancestor in path.ancestors() {
1079///     println!("{}", ancestor.display());
1080/// }
1081/// ```
1082///
1083/// [`ancestors`]: Path::ancestors
1084#[derive(Copy, Clone, Debug)]
1085#[must_use = "iterators are lazy and do nothing unless consumed"]
1086#[stable(feature = "path_ancestors", since = "1.28.0")]
1087pub struct Ancestors<'a> {
1088    next: Option<&'a Path>,
1089}
1090
1091#[stable(feature = "path_ancestors", since = "1.28.0")]
1092impl<'a> Iterator for Ancestors<'a> {
1093    type Item = &'a Path;
1094
1095    #[inline]
1096    fn next(&mut self) -> Option<Self::Item> {
1097        let next = self.next;
1098        self.next = next.and_then(Path::parent);
1099        next
1100    }
1101}
1102
1103#[stable(feature = "path_ancestors", since = "1.28.0")]
1104impl FusedIterator for Ancestors<'_> {}
1105
1106////////////////////////////////////////////////////////////////////////////////
1107// Basic types and traits
1108////////////////////////////////////////////////////////////////////////////////
1109
1110/// An owned, mutable path (akin to [`String`]).
1111///
1112/// This type provides methods like [`push`] and [`set_extension`] that mutate
1113/// the path in place. It also implements [`Deref`] to [`Path`], meaning that
1114/// all methods on [`Path`] slices are available on `PathBuf` values as well.
1115///
1116/// [`push`]: PathBuf::push
1117/// [`set_extension`]: PathBuf::set_extension
1118///
1119/// More details about the overall approach can be found in
1120/// the [module documentation](self).
1121///
1122/// # Examples
1123///
1124/// You can use [`push`] to build up a `PathBuf` from
1125/// components:
1126///
1127/// ```
1128/// use std::path::PathBuf;
1129///
1130/// let mut path = PathBuf::new();
1131///
1132/// path.push(r"C:\");
1133/// path.push("windows");
1134/// path.push("system32");
1135///
1136/// path.set_extension("dll");
1137/// ```
1138///
1139/// However, [`push`] is best used for dynamic situations. This is a better way
1140/// to do this when you know all of the components ahead of time:
1141///
1142/// ```
1143/// use std::path::PathBuf;
1144///
1145/// let path: PathBuf = [r"C:\", "windows", "system32.dll"].iter().collect();
1146/// ```
1147///
1148/// We can still do better than this! Since these are all strings, we can use
1149/// `From::from`:
1150///
1151/// ```
1152/// use std::path::PathBuf;
1153///
1154/// let path = PathBuf::from(r"C:\windows\system32.dll");
1155/// ```
1156///
1157/// Which method works best depends on what kind of situation you're in.
1158///
1159/// Note that `PathBuf` does not always sanitize arguments, for example
1160/// [`push`] allows paths built from strings which include separators:
1161///
1162/// ```
1163/// use std::path::PathBuf;
1164///
1165/// let mut path = PathBuf::new();
1166///
1167/// path.push(r"C:\");
1168/// path.push("windows");
1169/// path.push(r"..\otherdir");
1170/// path.push("system32");
1171/// ```
1172///
1173/// The behavior of `PathBuf` may be changed to a panic on such inputs
1174/// in the future. [`Extend::extend`] should be used to add multi-part paths.
1175#[cfg_attr(not(test), rustc_diagnostic_item = "PathBuf")]
1176#[stable(feature = "rust1", since = "1.0.0")]
1177pub struct PathBuf {
1178    inner: OsString,
1179}
1180
1181impl PathBuf {
1182    /// Allocates an empty `PathBuf`.
1183    ///
1184    /// # Examples
1185    ///
1186    /// ```
1187    /// use std::path::PathBuf;
1188    ///
1189    /// let path = PathBuf::new();
1190    /// ```
1191    #[stable(feature = "rust1", since = "1.0.0")]
1192    #[must_use]
1193    #[inline]
1194    #[rustc_const_stable(feature = "const_pathbuf_osstring_new", since = "CURRENT_RUSTC_VERSION")]
1195    pub const fn new() -> PathBuf {
1196        PathBuf { inner: OsString::new() }
1197    }
1198
1199    /// Creates a new `PathBuf` with a given capacity used to create the
1200    /// internal [`OsString`]. See [`with_capacity`] defined on [`OsString`].
1201    ///
1202    /// # Examples
1203    ///
1204    /// ```
1205    /// use std::path::PathBuf;
1206    ///
1207    /// let mut path = PathBuf::with_capacity(10);
1208    /// let capacity = path.capacity();
1209    ///
1210    /// // This push is done without reallocating
1211    /// path.push(r"C:\");
1212    ///
1213    /// assert_eq!(capacity, path.capacity());
1214    /// ```
1215    ///
1216    /// [`with_capacity`]: OsString::with_capacity
1217    #[stable(feature = "path_buf_capacity", since = "1.44.0")]
1218    #[must_use]
1219    #[inline]
1220    pub fn with_capacity(capacity: usize) -> PathBuf {
1221        PathBuf { inner: OsString::with_capacity(capacity) }
1222    }
1223
1224    /// Coerces to a [`Path`] slice.
1225    ///
1226    /// # Examples
1227    ///
1228    /// ```
1229    /// use std::path::{Path, PathBuf};
1230    ///
1231    /// let p = PathBuf::from("/test");
1232    /// assert_eq!(Path::new("/test"), p.as_path());
1233    /// ```
1234    #[cfg_attr(not(test), rustc_diagnostic_item = "pathbuf_as_path")]
1235    #[stable(feature = "rust1", since = "1.0.0")]
1236    #[must_use]
1237    #[inline]
1238    pub fn as_path(&self) -> &Path {
1239        self
1240    }
1241
1242    /// Consumes and leaks the `PathBuf`, returning a mutable reference to the contents,
1243    /// `&'a mut Path`.
1244    ///
1245    /// The caller has free choice over the returned lifetime, including 'static.
1246    /// Indeed, this function is ideally used for data that lives for the remainder of
1247    /// the program's life, as dropping the returned reference will cause a memory leak.
1248    ///
1249    /// It does not reallocate or shrink the `PathBuf`, so the leaked allocation may include
1250    /// unused capacity that is not part of the returned slice. If you want to discard excess
1251    /// capacity, call [`into_boxed_path`], and then [`Box::leak`] instead.
1252    /// However, keep in mind that trimming the capacity may result in a reallocation and copy.
1253    ///
1254    /// [`into_boxed_path`]: Self::into_boxed_path
1255    #[stable(feature = "os_string_pathbuf_leak", since = "1.89.0")]
1256    #[inline]
1257    pub fn leak<'a>(self) -> &'a mut Path {
1258        Path::from_inner_mut(self.inner.leak())
1259    }
1260
1261    /// Extends `self` with `path`.
1262    ///
1263    /// If `path` is absolute, it replaces the current path.
1264    ///
1265    /// On Windows:
1266    ///
1267    /// * if `path` has a root but no prefix (e.g., `\windows`), it
1268    ///   replaces everything except for the prefix (if any) of `self`.
1269    /// * if `path` has a prefix but no root, it replaces `self`.
1270    /// * if `self` has a verbatim prefix (e.g. `\\?\C:\windows`)
1271    ///   and `path` is not empty, the new path is normalized: all references
1272    ///   to `.` and `..` are removed.
1273    ///
1274    /// Consider using [`Path::join`] if you need a new `PathBuf` instead of
1275    /// using this function on a cloned `PathBuf`.
1276    ///
1277    /// # Examples
1278    ///
1279    /// Pushing a relative path extends the existing path:
1280    ///
1281    /// ```
1282    /// use std::path::PathBuf;
1283    ///
1284    /// let mut path = PathBuf::from("/tmp");
1285    /// path.push("file.bk");
1286    /// assert_eq!(path, PathBuf::from("/tmp/file.bk"));
1287    /// ```
1288    ///
1289    /// Pushing an absolute path replaces the existing path:
1290    ///
1291    /// ```
1292    /// use std::path::PathBuf;
1293    ///
1294    /// let mut path = PathBuf::from("/tmp");
1295    /// path.push("/etc");
1296    /// assert_eq!(path, PathBuf::from("/etc"));
1297    /// ```
1298    #[stable(feature = "rust1", since = "1.0.0")]
1299    #[rustc_confusables("append", "put")]
1300    pub fn push<P: AsRef<Path>>(&mut self, path: P) {
1301        self._push(path.as_ref())
1302    }
1303
1304    fn _push(&mut self, path: &Path) {
1305        // in general, a separator is needed if the rightmost byte is not a separator
1306        let buf = self.inner.as_encoded_bytes();
1307        let mut need_sep = buf.last().map(|c| !is_sep_byte(*c)).unwrap_or(false);
1308
1309        // in the special case of `C:` on Windows, do *not* add a separator
1310        let comps = self.components();
1311
1312        if comps.prefix_len() > 0
1313            && comps.prefix_len() == comps.path.len()
1314            && comps.prefix.unwrap().is_drive()
1315        {
1316            need_sep = false
1317        }
1318
1319        let need_clear = if cfg!(target_os = "cygwin") {
1320            // If path is absolute and its prefix is none, it is like `/foo`,
1321            // and will be handled below.
1322            path.prefix().is_some()
1323        } else {
1324            // On Unix: prefix is always None.
1325            path.is_absolute() || path.prefix().is_some()
1326        };
1327
1328        // absolute `path` replaces `self`
1329        if need_clear {
1330            self.inner.truncate(0);
1331
1332        // verbatim paths need . and .. removed
1333        } else if comps.prefix_verbatim() && !path.inner.is_empty() {
1334            let mut buf: Vec<_> = comps.collect();
1335            for c in path.components() {
1336                match c {
1337                    Component::RootDir => {
1338                        buf.truncate(1);
1339                        buf.push(c);
1340                    }
1341                    Component::CurDir => (),
1342                    Component::ParentDir => {
1343                        if let Some(Component::Normal(_)) = buf.last() {
1344                            buf.pop();
1345                        }
1346                    }
1347                    _ => buf.push(c),
1348                }
1349            }
1350
1351            let mut res = OsString::new();
1352            let mut need_sep = false;
1353
1354            for c in buf {
1355                if need_sep && c != Component::RootDir {
1356                    res.push(MAIN_SEP_STR);
1357                }
1358                res.push(c.as_os_str());
1359
1360                need_sep = match c {
1361                    Component::RootDir => false,
1362                    Component::Prefix(prefix) => {
1363                        !prefix.parsed.is_drive() && prefix.parsed.len() > 0
1364                    }
1365                    _ => true,
1366                }
1367            }
1368
1369            self.inner = res;
1370            return;
1371
1372        // `path` has a root but no prefix, e.g., `\windows` (Windows only)
1373        } else if path.has_root() {
1374            let prefix_len = self.components().prefix_remaining();
1375            self.inner.truncate(prefix_len);
1376
1377        // `path` is a pure relative path
1378        } else if need_sep {
1379            self.inner.push(MAIN_SEP_STR);
1380        }
1381
1382        self.inner.push(path);
1383    }
1384
1385    /// Truncates `self` to [`self.parent`].
1386    ///
1387    /// Returns `false` and does nothing if [`self.parent`] is [`None`].
1388    /// Otherwise, returns `true`.
1389    ///
1390    /// [`self.parent`]: Path::parent
1391    ///
1392    /// # Examples
1393    ///
1394    /// ```
1395    /// use std::path::{Path, PathBuf};
1396    ///
1397    /// let mut p = PathBuf::from("/spirited/away.rs");
1398    ///
1399    /// p.pop();
1400    /// assert_eq!(Path::new("/spirited"), p);
1401    /// p.pop();
1402    /// assert_eq!(Path::new("/"), p);
1403    /// ```
1404    #[stable(feature = "rust1", since = "1.0.0")]
1405    pub fn pop(&mut self) -> bool {
1406        match self.parent().map(|p| p.as_u8_slice().len()) {
1407            Some(len) => {
1408                self.inner.truncate(len);
1409                true
1410            }
1411            None => false,
1412        }
1413    }
1414
1415    /// Updates [`self.file_name`] to `file_name`.
1416    ///
1417    /// If [`self.file_name`] was [`None`], this is equivalent to pushing
1418    /// `file_name`.
1419    ///
1420    /// Otherwise it is equivalent to calling [`pop`] and then pushing
1421    /// `file_name`. The new path will be a sibling of the original path.
1422    /// (That is, it will have the same parent.)
1423    ///
1424    /// The argument is not sanitized, so can include separators. This
1425    /// behavior may be changed to a panic in the future.
1426    ///
1427    /// [`self.file_name`]: Path::file_name
1428    /// [`pop`]: PathBuf::pop
1429    ///
1430    /// # Examples
1431    ///
1432    /// ```
1433    /// use std::path::PathBuf;
1434    ///
1435    /// let mut buf = PathBuf::from("/");
1436    /// assert!(buf.file_name() == None);
1437    ///
1438    /// buf.set_file_name("foo.txt");
1439    /// assert!(buf == PathBuf::from("/foo.txt"));
1440    /// assert!(buf.file_name().is_some());
1441    ///
1442    /// buf.set_file_name("bar.txt");
1443    /// assert!(buf == PathBuf::from("/bar.txt"));
1444    ///
1445    /// buf.set_file_name("baz");
1446    /// assert!(buf == PathBuf::from("/baz"));
1447    ///
1448    /// buf.set_file_name("../b/c.txt");
1449    /// assert!(buf == PathBuf::from("/../b/c.txt"));
1450    ///
1451    /// buf.set_file_name("baz");
1452    /// assert!(buf == PathBuf::from("/../b/baz"));
1453    /// ```
1454    #[stable(feature = "rust1", since = "1.0.0")]
1455    pub fn set_file_name<S: AsRef<OsStr>>(&mut self, file_name: S) {
1456        self._set_file_name(file_name.as_ref())
1457    }
1458
1459    fn _set_file_name(&mut self, file_name: &OsStr) {
1460        if self.file_name().is_some() {
1461            let popped = self.pop();
1462            debug_assert!(popped);
1463        }
1464        self.push(file_name);
1465    }
1466
1467    /// Updates [`self.extension`] to `Some(extension)` or to `None` if
1468    /// `extension` is empty.
1469    ///
1470    /// Returns `false` and does nothing if [`self.file_name`] is [`None`],
1471    /// returns `true` and updates the extension otherwise.
1472    ///
1473    /// If [`self.extension`] is [`None`], the extension is added; otherwise
1474    /// it is replaced.
1475    ///
1476    /// If `extension` is the empty string, [`self.extension`] will be [`None`]
1477    /// afterwards, not `Some("")`.
1478    ///
1479    /// # Panics
1480    ///
1481    /// Panics if the passed extension contains a path separator (see
1482    /// [`is_separator`]).
1483    ///
1484    /// # Caveats
1485    ///
1486    /// The new `extension` may contain dots and will be used in its entirety,
1487    /// but only the part after the final dot will be reflected in
1488    /// [`self.extension`].
1489    ///
1490    /// If the file stem contains internal dots and `extension` is empty, part
1491    /// of the old file stem will be considered the new [`self.extension`].
1492    ///
1493    /// See the examples below.
1494    ///
1495    /// [`self.file_name`]: Path::file_name
1496    /// [`self.extension`]: Path::extension
1497    ///
1498    /// # Examples
1499    ///
1500    /// ```
1501    /// use std::path::{Path, PathBuf};
1502    ///
1503    /// let mut p = PathBuf::from("/feel/the");
1504    ///
1505    /// p.set_extension("force");
1506    /// assert_eq!(Path::new("/feel/the.force"), p.as_path());
1507    ///
1508    /// p.set_extension("dark.side");
1509    /// assert_eq!(Path::new("/feel/the.dark.side"), p.as_path());
1510    ///
1511    /// p.set_extension("cookie");
1512    /// assert_eq!(Path::new("/feel/the.dark.cookie"), p.as_path());
1513    ///
1514    /// p.set_extension("");
1515    /// assert_eq!(Path::new("/feel/the.dark"), p.as_path());
1516    ///
1517    /// p.set_extension("");
1518    /// assert_eq!(Path::new("/feel/the"), p.as_path());
1519    ///
1520    /// p.set_extension("");
1521    /// assert_eq!(Path::new("/feel/the"), p.as_path());
1522    /// ```
1523    #[stable(feature = "rust1", since = "1.0.0")]
1524    pub fn set_extension<S: AsRef<OsStr>>(&mut self, extension: S) -> bool {
1525        self._set_extension(extension.as_ref())
1526    }
1527
1528    fn _set_extension(&mut self, extension: &OsStr) -> bool {
1529        validate_extension(extension);
1530
1531        let file_stem = match self.file_stem() {
1532            None => return false,
1533            Some(f) => f.as_encoded_bytes(),
1534        };
1535
1536        // truncate until right after the file stem
1537        let end_file_stem = file_stem[file_stem.len()..].as_ptr().addr();
1538        let start = self.inner.as_encoded_bytes().as_ptr().addr();
1539        self.inner.truncate(end_file_stem.wrapping_sub(start));
1540
1541        // add the new extension, if any
1542        let new = extension.as_encoded_bytes();
1543        if !new.is_empty() {
1544            self.inner.reserve_exact(new.len() + 1);
1545            self.inner.push(".");
1546            // SAFETY: Since a UTF-8 string was just pushed, it is not possible
1547            // for the buffer to end with a surrogate half.
1548            unsafe { self.inner.extend_from_slice_unchecked(new) };
1549        }
1550
1551        true
1552    }
1553
1554    /// Append [`self.extension`] with `extension`.
1555    ///
1556    /// Returns `false` and does nothing if [`self.file_name`] is [`None`],
1557    /// returns `true` and updates the extension otherwise.
1558    ///
1559    /// # Panics
1560    ///
1561    /// Panics if the passed extension contains a path separator (see
1562    /// [`is_separator`]).
1563    ///
1564    /// # Caveats
1565    ///
1566    /// The appended `extension` may contain dots and will be used in its entirety,
1567    /// but only the part after the final dot will be reflected in
1568    /// [`self.extension`].
1569    ///
1570    /// See the examples below.
1571    ///
1572    /// [`self.file_name`]: Path::file_name
1573    /// [`self.extension`]: Path::extension
1574    ///
1575    /// # Examples
1576    ///
1577    /// ```
1578    /// use std::path::{Path, PathBuf};
1579    ///
1580    /// let mut p = PathBuf::from("/feel/the");
1581    ///
1582    /// p.add_extension("formatted");
1583    /// assert_eq!(Path::new("/feel/the.formatted"), p.as_path());
1584    ///
1585    /// p.add_extension("dark.side");
1586    /// assert_eq!(Path::new("/feel/the.formatted.dark.side"), p.as_path());
1587    ///
1588    /// p.set_extension("cookie");
1589    /// assert_eq!(Path::new("/feel/the.formatted.dark.cookie"), p.as_path());
1590    ///
1591    /// p.set_extension("");
1592    /// assert_eq!(Path::new("/feel/the.formatted.dark"), p.as_path());
1593    ///
1594    /// p.add_extension("");
1595    /// assert_eq!(Path::new("/feel/the.formatted.dark"), p.as_path());
1596    /// ```
1597    #[stable(feature = "path_add_extension", since = "CURRENT_RUSTC_VERSION")]
1598    pub fn add_extension<S: AsRef<OsStr>>(&mut self, extension: S) -> bool {
1599        self._add_extension(extension.as_ref())
1600    }
1601
1602    fn _add_extension(&mut self, extension: &OsStr) -> bool {
1603        validate_extension(extension);
1604
1605        let file_name = match self.file_name() {
1606            None => return false,
1607            Some(f) => f.as_encoded_bytes(),
1608        };
1609
1610        let new = extension.as_encoded_bytes();
1611        if !new.is_empty() {
1612            // truncate until right after the file name
1613            // this is necessary for trimming the trailing slash
1614            let end_file_name = file_name[file_name.len()..].as_ptr().addr();
1615            let start = self.inner.as_encoded_bytes().as_ptr().addr();
1616            self.inner.truncate(end_file_name.wrapping_sub(start));
1617
1618            // append the new extension
1619            self.inner.reserve_exact(new.len() + 1);
1620            self.inner.push(".");
1621            // SAFETY: Since a UTF-8 string was just pushed, it is not possible
1622            // for the buffer to end with a surrogate half.
1623            unsafe { self.inner.extend_from_slice_unchecked(new) };
1624        }
1625
1626        true
1627    }
1628
1629    /// Yields a mutable reference to the underlying [`OsString`] instance.
1630    ///
1631    /// # Examples
1632    ///
1633    /// ```
1634    /// use std::path::{Path, PathBuf};
1635    ///
1636    /// let mut path = PathBuf::from("/foo");
1637    ///
1638    /// path.push("bar");
1639    /// assert_eq!(path, Path::new("/foo/bar"));
1640    ///
1641    /// // OsString's `push` does not add a separator.
1642    /// path.as_mut_os_string().push("baz");
1643    /// assert_eq!(path, Path::new("/foo/barbaz"));
1644    /// ```
1645    #[stable(feature = "path_as_mut_os_str", since = "1.70.0")]
1646    #[must_use]
1647    #[inline]
1648    pub fn as_mut_os_string(&mut self) -> &mut OsString {
1649        &mut self.inner
1650    }
1651
1652    /// Consumes the `PathBuf`, yielding its internal [`OsString`] storage.
1653    ///
1654    /// # Examples
1655    ///
1656    /// ```
1657    /// use std::path::PathBuf;
1658    ///
1659    /// let p = PathBuf::from("/the/head");
1660    /// let os_str = p.into_os_string();
1661    /// ```
1662    #[stable(feature = "rust1", since = "1.0.0")]
1663    #[must_use = "`self` will be dropped if the result is not used"]
1664    #[inline]
1665    pub fn into_os_string(self) -> OsString {
1666        self.inner
1667    }
1668
1669    /// Converts this `PathBuf` into a [boxed](Box) [`Path`].
1670    #[stable(feature = "into_boxed_path", since = "1.20.0")]
1671    #[must_use = "`self` will be dropped if the result is not used"]
1672    #[inline]
1673    pub fn into_boxed_path(self) -> Box<Path> {
1674        let rw = Box::into_raw(self.inner.into_boxed_os_str()) as *mut Path;
1675        unsafe { Box::from_raw(rw) }
1676    }
1677
1678    /// Invokes [`capacity`] on the underlying instance of [`OsString`].
1679    ///
1680    /// [`capacity`]: OsString::capacity
1681    #[stable(feature = "path_buf_capacity", since = "1.44.0")]
1682    #[must_use]
1683    #[inline]
1684    pub fn capacity(&self) -> usize {
1685        self.inner.capacity()
1686    }
1687
1688    /// Invokes [`clear`] on the underlying instance of [`OsString`].
1689    ///
1690    /// [`clear`]: OsString::clear
1691    #[stable(feature = "path_buf_capacity", since = "1.44.0")]
1692    #[inline]
1693    pub fn clear(&mut self) {
1694        self.inner.clear()
1695    }
1696
1697    /// Invokes [`reserve`] on the underlying instance of [`OsString`].
1698    ///
1699    /// [`reserve`]: OsString::reserve
1700    #[stable(feature = "path_buf_capacity", since = "1.44.0")]
1701    #[inline]
1702    pub fn reserve(&mut self, additional: usize) {
1703        self.inner.reserve(additional)
1704    }
1705
1706    /// Invokes [`try_reserve`] on the underlying instance of [`OsString`].
1707    ///
1708    /// [`try_reserve`]: OsString::try_reserve
1709    #[stable(feature = "try_reserve_2", since = "1.63.0")]
1710    #[inline]
1711    pub fn try_reserve(&mut self, additional: usize) -> Result<(), TryReserveError> {
1712        self.inner.try_reserve(additional)
1713    }
1714
1715    /// Invokes [`reserve_exact`] on the underlying instance of [`OsString`].
1716    ///
1717    /// [`reserve_exact`]: OsString::reserve_exact
1718    #[stable(feature = "path_buf_capacity", since = "1.44.0")]
1719    #[inline]
1720    pub fn reserve_exact(&mut self, additional: usize) {
1721        self.inner.reserve_exact(additional)
1722    }
1723
1724    /// Invokes [`try_reserve_exact`] on the underlying instance of [`OsString`].
1725    ///
1726    /// [`try_reserve_exact`]: OsString::try_reserve_exact
1727    #[stable(feature = "try_reserve_2", since = "1.63.0")]
1728    #[inline]
1729    pub fn try_reserve_exact(&mut self, additional: usize) -> Result<(), TryReserveError> {
1730        self.inner.try_reserve_exact(additional)
1731    }
1732
1733    /// Invokes [`shrink_to_fit`] on the underlying instance of [`OsString`].
1734    ///
1735    /// [`shrink_to_fit`]: OsString::shrink_to_fit
1736    #[stable(feature = "path_buf_capacity", since = "1.44.0")]
1737    #[inline]
1738    pub fn shrink_to_fit(&mut self) {
1739        self.inner.shrink_to_fit()
1740    }
1741
1742    /// Invokes [`shrink_to`] on the underlying instance of [`OsString`].
1743    ///
1744    /// [`shrink_to`]: OsString::shrink_to
1745    #[stable(feature = "shrink_to", since = "1.56.0")]
1746    #[inline]
1747    pub fn shrink_to(&mut self, min_capacity: usize) {
1748        self.inner.shrink_to(min_capacity)
1749    }
1750}
1751
1752#[stable(feature = "rust1", since = "1.0.0")]
1753impl Clone for PathBuf {
1754    #[inline]
1755    fn clone(&self) -> Self {
1756        PathBuf { inner: self.inner.clone() }
1757    }
1758
1759    /// Clones the contents of `source` into `self`.
1760    ///
1761    /// This method is preferred over simply assigning `source.clone()` to `self`,
1762    /// as it avoids reallocation if possible.
1763    #[inline]
1764    fn clone_from(&mut self, source: &Self) {
1765        self.inner.clone_from(&source.inner)
1766    }
1767}
1768
1769#[stable(feature = "box_from_path", since = "1.17.0")]
1770impl From<&Path> for Box<Path> {
1771    /// Creates a boxed [`Path`] from a reference.
1772    ///
1773    /// This will allocate and clone `path` to it.
1774    fn from(path: &Path) -> Box<Path> {
1775        let boxed: Box<OsStr> = path.inner.into();
1776        let rw = Box::into_raw(boxed) as *mut Path;
1777        unsafe { Box::from_raw(rw) }
1778    }
1779}
1780
1781#[stable(feature = "box_from_mut_slice", since = "1.84.0")]
1782impl From<&mut Path> for Box<Path> {
1783    /// Creates a boxed [`Path`] from a reference.
1784    ///
1785    /// This will allocate and clone `path` to it.
1786    fn from(path: &mut Path) -> Box<Path> {
1787        Self::from(&*path)
1788    }
1789}
1790
1791#[stable(feature = "box_from_cow", since = "1.45.0")]
1792impl From<Cow<'_, Path>> for Box<Path> {
1793    /// Creates a boxed [`Path`] from a clone-on-write pointer.
1794    ///
1795    /// Converting from a `Cow::Owned` does not clone or allocate.
1796    #[inline]
1797    fn from(cow: Cow<'_, Path>) -> Box<Path> {
1798        match cow {
1799            Cow::Borrowed(path) => Box::from(path),
1800            Cow::Owned(path) => Box::from(path),
1801        }
1802    }
1803}
1804
1805#[stable(feature = "path_buf_from_box", since = "1.18.0")]
1806impl From<Box<Path>> for PathBuf {
1807    /// Converts a <code>[Box]&lt;[Path]&gt;</code> into a [`PathBuf`].
1808    ///
1809    /// This conversion does not allocate or copy memory.
1810    #[inline]
1811    fn from(boxed: Box<Path>) -> PathBuf {
1812        boxed.into_path_buf()
1813    }
1814}
1815
1816#[stable(feature = "box_from_path_buf", since = "1.20.0")]
1817impl From<PathBuf> for Box<Path> {
1818    /// Converts a [`PathBuf`] into a <code>[Box]&lt;[Path]&gt;</code>.
1819    ///
1820    /// This conversion currently should not allocate memory,
1821    /// but this behavior is not guaranteed on all platforms or in all future versions.
1822    #[inline]
1823    fn from(p: PathBuf) -> Box<Path> {
1824        p.into_boxed_path()
1825    }
1826}
1827
1828#[stable(feature = "more_box_slice_clone", since = "1.29.0")]
1829impl Clone for Box<Path> {
1830    #[inline]
1831    fn clone(&self) -> Self {
1832        self.to_path_buf().into_boxed_path()
1833    }
1834}
1835
1836#[stable(feature = "rust1", since = "1.0.0")]
1837impl<T: ?Sized + AsRef<OsStr>> From<&T> for PathBuf {
1838    /// Converts a borrowed [`OsStr`] to a [`PathBuf`].
1839    ///
1840    /// Allocates a [`PathBuf`] and copies the data into it.
1841    #[inline]
1842    fn from(s: &T) -> PathBuf {
1843        PathBuf::from(s.as_ref().to_os_string())
1844    }
1845}
1846
1847#[stable(feature = "rust1", since = "1.0.0")]
1848impl From<OsString> for PathBuf {
1849    /// Converts an [`OsString`] into a [`PathBuf`].
1850    ///
1851    /// This conversion does not allocate or copy memory.
1852    #[inline]
1853    fn from(s: OsString) -> PathBuf {
1854        PathBuf { inner: s }
1855    }
1856}
1857
1858#[stable(feature = "from_path_buf_for_os_string", since = "1.14.0")]
1859impl From<PathBuf> for OsString {
1860    /// Converts a [`PathBuf`] into an [`OsString`]
1861    ///
1862    /// This conversion does not allocate or copy memory.
1863    #[inline]
1864    fn from(path_buf: PathBuf) -> OsString {
1865        path_buf.inner
1866    }
1867}
1868
1869#[stable(feature = "rust1", since = "1.0.0")]
1870impl From<String> for PathBuf {
1871    /// Converts a [`String`] into a [`PathBuf`]
1872    ///
1873    /// This conversion does not allocate or copy memory.
1874    #[inline]
1875    fn from(s: String) -> PathBuf {
1876        PathBuf::from(OsString::from(s))
1877    }
1878}
1879
1880#[stable(feature = "path_from_str", since = "1.32.0")]
1881impl FromStr for PathBuf {
1882    type Err = core::convert::Infallible;
1883
1884    #[inline]
1885    fn from_str(s: &str) -> Result<Self, Self::Err> {
1886        Ok(PathBuf::from(s))
1887    }
1888}
1889
1890#[stable(feature = "rust1", since = "1.0.0")]
1891impl<P: AsRef<Path>> FromIterator<P> for PathBuf {
1892    /// Creates a new `PathBuf` from the [`Path`] elements of an iterator.
1893    ///
1894    /// This uses [`push`](Self::push) to add each element, so can be used to adjoin multiple path
1895    /// [components](Components).
1896    ///
1897    /// # Examples
1898    /// ```
1899    /// # use std::path::PathBuf;
1900    /// let path = PathBuf::from_iter(["/tmp", "foo", "bar"]);
1901    /// assert_eq!(path, PathBuf::from("/tmp/foo/bar"));
1902    /// ```
1903    ///
1904    /// See documentation for [`push`](Self::push) for more details on how the path is constructed.
1905    fn from_iter<I: IntoIterator<Item = P>>(iter: I) -> PathBuf {
1906        let mut buf = PathBuf::new();
1907        buf.extend(iter);
1908        buf
1909    }
1910}
1911
1912#[stable(feature = "rust1", since = "1.0.0")]
1913impl<P: AsRef<Path>> Extend<P> for PathBuf {
1914    /// Extends `self` with [`Path`] elements from `iter`.
1915    ///
1916    /// This uses [`push`](Self::push) to add each element, so can be used to adjoin multiple path
1917    /// [components](Components).
1918    ///
1919    /// # Examples
1920    /// ```
1921    /// # use std::path::PathBuf;
1922    /// let mut path = PathBuf::from("/tmp");
1923    /// path.extend(["foo", "bar", "file.txt"]);
1924    /// assert_eq!(path, PathBuf::from("/tmp/foo/bar/file.txt"));
1925    /// ```
1926    ///
1927    /// See documentation for [`push`](Self::push) for more details on how the path is constructed.
1928    fn extend<I: IntoIterator<Item = P>>(&mut self, iter: I) {
1929        iter.into_iter().for_each(move |p| self.push(p.as_ref()));
1930    }
1931
1932    #[inline]
1933    fn extend_one(&mut self, p: P) {
1934        self.push(p.as_ref());
1935    }
1936}
1937
1938#[stable(feature = "rust1", since = "1.0.0")]
1939impl fmt::Debug for PathBuf {
1940    fn fmt(&self, formatter: &mut fmt::Formatter<'_>) -> fmt::Result {
1941        fmt::Debug::fmt(&**self, formatter)
1942    }
1943}
1944
1945#[stable(feature = "rust1", since = "1.0.0")]
1946impl ops::Deref for PathBuf {
1947    type Target = Path;
1948    #[inline]
1949    fn deref(&self) -> &Path {
1950        Path::new(&self.inner)
1951    }
1952}
1953
1954#[stable(feature = "path_buf_deref_mut", since = "1.68.0")]
1955impl ops::DerefMut for PathBuf {
1956    #[inline]
1957    fn deref_mut(&mut self) -> &mut Path {
1958        Path::from_inner_mut(&mut self.inner)
1959    }
1960}
1961
1962#[stable(feature = "rust1", since = "1.0.0")]
1963impl Borrow<Path> for PathBuf {
1964    #[inline]
1965    fn borrow(&self) -> &Path {
1966        self.deref()
1967    }
1968}
1969
1970#[stable(feature = "default_for_pathbuf", since = "1.17.0")]
1971impl Default for PathBuf {
1972    #[inline]
1973    fn default() -> Self {
1974        PathBuf::new()
1975    }
1976}
1977
1978#[stable(feature = "cow_from_path", since = "1.6.0")]
1979impl<'a> From<&'a Path> for Cow<'a, Path> {
1980    /// Creates a clone-on-write pointer from a reference to
1981    /// [`Path`].
1982    ///
1983    /// This conversion does not clone or allocate.
1984    #[inline]
1985    fn from(s: &'a Path) -> Cow<'a, Path> {
1986        Cow::Borrowed(s)
1987    }
1988}
1989
1990#[stable(feature = "cow_from_path", since = "1.6.0")]
1991impl<'a> From<PathBuf> for Cow<'a, Path> {
1992    /// Creates a clone-on-write pointer from an owned
1993    /// instance of [`PathBuf`].
1994    ///
1995    /// This conversion does not clone or allocate.
1996    #[inline]
1997    fn from(s: PathBuf) -> Cow<'a, Path> {
1998        Cow::Owned(s)
1999    }
2000}
2001
2002#[stable(feature = "cow_from_pathbuf_ref", since = "1.28.0")]
2003impl<'a> From<&'a PathBuf> for Cow<'a, Path> {
2004    /// Creates a clone-on-write pointer from a reference to
2005    /// [`PathBuf`].
2006    ///
2007    /// This conversion does not clone or allocate.
2008    #[inline]
2009    fn from(p: &'a PathBuf) -> Cow<'a, Path> {
2010        Cow::Borrowed(p.as_path())
2011    }
2012}
2013
2014#[stable(feature = "pathbuf_from_cow_path", since = "1.28.0")]
2015impl<'a> From<Cow<'a, Path>> for PathBuf {
2016    /// Converts a clone-on-write pointer to an owned path.
2017    ///
2018    /// Converting from a `Cow::Owned` does not clone or allocate.
2019    #[inline]
2020    fn from(p: Cow<'a, Path>) -> Self {
2021        p.into_owned()
2022    }
2023}
2024
2025#[stable(feature = "shared_from_slice2", since = "1.24.0")]
2026impl From<PathBuf> for Arc<Path> {
2027    /// Converts a [`PathBuf`] into an <code>[Arc]<[Path]></code> by moving the [`PathBuf`] data
2028    /// into a new [`Arc`] buffer.
2029    #[inline]
2030    fn from(s: PathBuf) -> Arc<Path> {
2031        let arc: Arc<OsStr> = Arc::from(s.into_os_string());
2032        unsafe { Arc::from_raw(Arc::into_raw(arc) as *const Path) }
2033    }
2034}
2035
2036#[stable(feature = "shared_from_slice2", since = "1.24.0")]
2037impl From<&Path> for Arc<Path> {
2038    /// Converts a [`Path`] into an [`Arc`] by copying the [`Path`] data into a new [`Arc`] buffer.
2039    #[inline]
2040    fn from(s: &Path) -> Arc<Path> {
2041        let arc: Arc<OsStr> = Arc::from(s.as_os_str());
2042        unsafe { Arc::from_raw(Arc::into_raw(arc) as *const Path) }
2043    }
2044}
2045
2046#[stable(feature = "shared_from_mut_slice", since = "1.84.0")]
2047impl From<&mut Path> for Arc<Path> {
2048    /// Converts a [`Path`] into an [`Arc`] by copying the [`Path`] data into a new [`Arc`] buffer.
2049    #[inline]
2050    fn from(s: &mut Path) -> Arc<Path> {
2051        Arc::from(&*s)
2052    }
2053}
2054
2055#[stable(feature = "shared_from_slice2", since = "1.24.0")]
2056impl From<PathBuf> for Rc<Path> {
2057    /// Converts a [`PathBuf`] into an <code>[Rc]<[Path]></code> by moving the [`PathBuf`] data into
2058    /// a new [`Rc`] buffer.
2059    #[inline]
2060    fn from(s: PathBuf) -> Rc<Path> {
2061        let rc: Rc<OsStr> = Rc::from(s.into_os_string());
2062        unsafe { Rc::from_raw(Rc::into_raw(rc) as *const Path) }
2063    }
2064}
2065
2066#[stable(feature = "shared_from_slice2", since = "1.24.0")]
2067impl From<&Path> for Rc<Path> {
2068    /// Converts a [`Path`] into an [`Rc`] by copying the [`Path`] data into a new [`Rc`] buffer.
2069    #[inline]
2070    fn from(s: &Path) -> Rc<Path> {
2071        let rc: Rc<OsStr> = Rc::from(s.as_os_str());
2072        unsafe { Rc::from_raw(Rc::into_raw(rc) as *const Path) }
2073    }
2074}
2075
2076#[stable(feature = "shared_from_mut_slice", since = "1.84.0")]
2077impl From<&mut Path> for Rc<Path> {
2078    /// Converts a [`Path`] into an [`Rc`] by copying the [`Path`] data into a new [`Rc`] buffer.
2079    #[inline]
2080    fn from(s: &mut Path) -> Rc<Path> {
2081        Rc::from(&*s)
2082    }
2083}
2084
2085#[stable(feature = "rust1", since = "1.0.0")]
2086impl ToOwned for Path {
2087    type Owned = PathBuf;
2088    #[inline]
2089    fn to_owned(&self) -> PathBuf {
2090        self.to_path_buf()
2091    }
2092    #[inline]
2093    fn clone_into(&self, target: &mut PathBuf) {
2094        self.inner.clone_into(&mut target.inner);
2095    }
2096}
2097
2098#[stable(feature = "rust1", since = "1.0.0")]
2099impl PartialEq for PathBuf {
2100    #[inline]
2101    fn eq(&self, other: &PathBuf) -> bool {
2102        self.components() == other.components()
2103    }
2104}
2105
2106#[stable(feature = "eq_str_for_path", since = "CURRENT_RUSTC_VERSION")]
2107impl cmp::PartialEq<str> for PathBuf {
2108    #[inline]
2109    fn eq(&self, other: &str) -> bool {
2110        Path::eq(self, other)
2111    }
2112}
2113
2114#[stable(feature = "eq_str_for_path", since = "CURRENT_RUSTC_VERSION")]
2115impl cmp::PartialEq<PathBuf> for str {
2116    #[inline]
2117    fn eq(&self, other: &PathBuf) -> bool {
2118        other == self
2119    }
2120}
2121
2122#[stable(feature = "eq_str_for_path", since = "CURRENT_RUSTC_VERSION")]
2123impl cmp::PartialEq<String> for PathBuf {
2124    #[inline]
2125    fn eq(&self, other: &String) -> bool {
2126        **self == **other
2127    }
2128}
2129
2130#[stable(feature = "eq_str_for_path", since = "CURRENT_RUSTC_VERSION")]
2131impl cmp::PartialEq<PathBuf> for String {
2132    #[inline]
2133    fn eq(&self, other: &PathBuf) -> bool {
2134        other == self
2135    }
2136}
2137
2138#[stable(feature = "rust1", since = "1.0.0")]
2139impl Hash for PathBuf {
2140    fn hash<H: Hasher>(&self, h: &mut H) {
2141        self.as_path().hash(h)
2142    }
2143}
2144
2145#[stable(feature = "rust1", since = "1.0.0")]
2146impl Eq for PathBuf {}
2147
2148#[stable(feature = "rust1", since = "1.0.0")]
2149impl PartialOrd for PathBuf {
2150    #[inline]
2151    fn partial_cmp(&self, other: &PathBuf) -> Option<cmp::Ordering> {
2152        Some(compare_components(self.components(), other.components()))
2153    }
2154}
2155
2156#[stable(feature = "rust1", since = "1.0.0")]
2157impl Ord for PathBuf {
2158    #[inline]
2159    fn cmp(&self, other: &PathBuf) -> cmp::Ordering {
2160        compare_components(self.components(), other.components())
2161    }
2162}
2163
2164#[stable(feature = "rust1", since = "1.0.0")]
2165impl AsRef<OsStr> for PathBuf {
2166    #[inline]
2167    fn as_ref(&self) -> &OsStr {
2168        &self.inner[..]
2169    }
2170}
2171
2172/// A slice of a path (akin to [`str`]).
2173///
2174/// This type supports a number of operations for inspecting a path, including
2175/// breaking the path into its components (separated by `/` on Unix and by either
2176/// `/` or `\` on Windows), extracting the file name, determining whether the path
2177/// is absolute, and so on.
2178///
2179/// This is an *unsized* type, meaning that it must always be used behind a
2180/// pointer like `&` or [`Box`]. For an owned version of this type,
2181/// see [`PathBuf`].
2182///
2183/// More details about the overall approach can be found in
2184/// the [module documentation](self).
2185///
2186/// # Examples
2187///
2188/// ```
2189/// use std::path::Path;
2190/// use std::ffi::OsStr;
2191///
2192/// // Note: this example does work on Windows
2193/// let path = Path::new("./foo/bar.txt");
2194///
2195/// let parent = path.parent();
2196/// assert_eq!(parent, Some(Path::new("./foo")));
2197///
2198/// let file_stem = path.file_stem();
2199/// assert_eq!(file_stem, Some(OsStr::new("bar")));
2200///
2201/// let extension = path.extension();
2202/// assert_eq!(extension, Some(OsStr::new("txt")));
2203/// ```
2204#[cfg_attr(not(test), rustc_diagnostic_item = "Path")]
2205#[stable(feature = "rust1", since = "1.0.0")]
2206// `Path::new` and `impl CloneToUninit for Path` current implementation relies
2207// on `Path` being layout-compatible with `OsStr`.
2208// However, `Path` layout is considered an implementation detail and must not be relied upon.
2209#[repr(transparent)]
2210pub struct Path {
2211    inner: OsStr,
2212}
2213
2214/// An error returned from [`Path::strip_prefix`] if the prefix was not found.
2215///
2216/// This `struct` is created by the [`strip_prefix`] method on [`Path`].
2217/// See its documentation for more.
2218///
2219/// [`strip_prefix`]: Path::strip_prefix
2220#[derive(Debug, Clone, PartialEq, Eq)]
2221#[stable(since = "1.7.0", feature = "strip_prefix")]
2222pub struct StripPrefixError(());
2223
2224/// An error returned from [`Path::normalize_lexically`] if a `..` parent reference
2225/// would escape the path.
2226#[unstable(feature = "normalize_lexically", issue = "134694")]
2227#[derive(Debug, PartialEq)]
2228#[non_exhaustive]
2229pub struct NormalizeError;
2230
2231impl Path {
2232    // The following (private!) function allows construction of a path from a u8
2233    // slice, which is only safe when it is known to follow the OsStr encoding.
2234    unsafe fn from_u8_slice(s: &[u8]) -> &Path {
2235        unsafe { Path::new(OsStr::from_encoded_bytes_unchecked(s)) }
2236    }
2237    // The following (private!) function reveals the byte encoding used for OsStr.
2238    pub(crate) fn as_u8_slice(&self) -> &[u8] {
2239        self.inner.as_encoded_bytes()
2240    }
2241
2242    /// Directly wraps a string slice as a `Path` slice.
2243    ///
2244    /// This is a cost-free conversion.
2245    ///
2246    /// # Examples
2247    ///
2248    /// ```
2249    /// use std::path::Path;
2250    ///
2251    /// Path::new("foo.txt");
2252    /// ```
2253    ///
2254    /// You can create `Path`s from `String`s, or even other `Path`s:
2255    ///
2256    /// ```
2257    /// use std::path::Path;
2258    ///
2259    /// let string = String::from("foo.txt");
2260    /// let from_string = Path::new(&string);
2261    /// let from_path = Path::new(&from_string);
2262    /// assert_eq!(from_string, from_path);
2263    /// ```
2264    #[stable(feature = "rust1", since = "1.0.0")]
2265    #[rustc_const_unstable(feature = "const_convert", issue = "143773")]
2266    pub const fn new<S: [const] AsRef<OsStr> + ?Sized>(s: &S) -> &Path {
2267        unsafe { &*(s.as_ref() as *const OsStr as *const Path) }
2268    }
2269
2270    #[rustc_const_unstable(feature = "const_convert", issue = "143773")]
2271    const fn from_inner_mut(inner: &mut OsStr) -> &mut Path {
2272        // SAFETY: Path is just a wrapper around OsStr,
2273        // therefore converting &mut OsStr to &mut Path is safe.
2274        unsafe { &mut *(inner as *mut OsStr as *mut Path) }
2275    }
2276
2277    /// Yields the underlying [`OsStr`] slice.
2278    ///
2279    /// # Examples
2280    ///
2281    /// ```
2282    /// use std::path::Path;
2283    ///
2284    /// let os_str = Path::new("foo.txt").as_os_str();
2285    /// assert_eq!(os_str, std::ffi::OsStr::new("foo.txt"));
2286    /// ```
2287    #[stable(feature = "rust1", since = "1.0.0")]
2288    #[must_use]
2289    #[inline]
2290    pub fn as_os_str(&self) -> &OsStr {
2291        &self.inner
2292    }
2293
2294    /// Yields a mutable reference to the underlying [`OsStr`] slice.
2295    ///
2296    /// # Examples
2297    ///
2298    /// ```
2299    /// use std::path::{Path, PathBuf};
2300    ///
2301    /// let mut path = PathBuf::from("Foo.TXT");
2302    ///
2303    /// assert_ne!(path, Path::new("foo.txt"));
2304    ///
2305    /// path.as_mut_os_str().make_ascii_lowercase();
2306    /// assert_eq!(path, Path::new("foo.txt"));
2307    /// ```
2308    #[stable(feature = "path_as_mut_os_str", since = "1.70.0")]
2309    #[must_use]
2310    #[inline]
2311    pub fn as_mut_os_str(&mut self) -> &mut OsStr {
2312        &mut self.inner
2313    }
2314
2315    /// Yields a [`&str`] slice if the `Path` is valid unicode.
2316    ///
2317    /// This conversion may entail doing a check for UTF-8 validity.
2318    /// Note that validation is performed because non-UTF-8 strings are
2319    /// perfectly valid for some OS.
2320    ///
2321    /// [`&str`]: str
2322    ///
2323    /// # Examples
2324    ///
2325    /// ```
2326    /// use std::path::Path;
2327    ///
2328    /// let path = Path::new("foo.txt");
2329    /// assert_eq!(path.to_str(), Some("foo.txt"));
2330    /// ```
2331    #[stable(feature = "rust1", since = "1.0.0")]
2332    #[must_use = "this returns the result of the operation, \
2333                  without modifying the original"]
2334    #[inline]
2335    pub fn to_str(&self) -> Option<&str> {
2336        self.inner.to_str()
2337    }
2338
2339    /// Converts a `Path` to a [`Cow<str>`].
2340    ///
2341    /// Any non-UTF-8 sequences are replaced with
2342    /// [`U+FFFD REPLACEMENT CHARACTER`][U+FFFD].
2343    ///
2344    /// [U+FFFD]: super::char::REPLACEMENT_CHARACTER
2345    ///
2346    /// # Examples
2347    ///
2348    /// Calling `to_string_lossy` on a `Path` with valid unicode:
2349    ///
2350    /// ```
2351    /// use std::path::Path;
2352    ///
2353    /// let path = Path::new("foo.txt");
2354    /// assert_eq!(path.to_string_lossy(), "foo.txt");
2355    /// ```
2356    ///
2357    /// Had `path` contained invalid unicode, the `to_string_lossy` call might
2358    /// have returned `"fo�.txt"`.
2359    #[stable(feature = "rust1", since = "1.0.0")]
2360    #[must_use = "this returns the result of the operation, \
2361                  without modifying the original"]
2362    #[inline]
2363    pub fn to_string_lossy(&self) -> Cow<'_, str> {
2364        self.inner.to_string_lossy()
2365    }
2366
2367    /// Converts a `Path` to an owned [`PathBuf`].
2368    ///
2369    /// # Examples
2370    ///
2371    /// ```
2372    /// use std::path::{Path, PathBuf};
2373    ///
2374    /// let path_buf = Path::new("foo.txt").to_path_buf();
2375    /// assert_eq!(path_buf, PathBuf::from("foo.txt"));
2376    /// ```
2377    #[rustc_conversion_suggestion]
2378    #[must_use = "this returns the result of the operation, \
2379                  without modifying the original"]
2380    #[stable(feature = "rust1", since = "1.0.0")]
2381    #[cfg_attr(not(test), rustc_diagnostic_item = "path_to_pathbuf")]
2382    pub fn to_path_buf(&self) -> PathBuf {
2383        PathBuf::from(self.inner.to_os_string())
2384    }
2385
2386    /// Returns `true` if the `Path` is absolute, i.e., if it is independent of
2387    /// the current directory.
2388    ///
2389    /// * On Unix, a path is absolute if it starts with the root, so
2390    /// `is_absolute` and [`has_root`] are equivalent.
2391    ///
2392    /// * On Windows, a path is absolute if it has a prefix and starts with the
2393    /// root: `c:\windows` is absolute, while `c:temp` and `\temp` are not.
2394    ///
2395    /// # Examples
2396    ///
2397    /// ```
2398    /// use std::path::Path;
2399    ///
2400    /// assert!(!Path::new("foo.txt").is_absolute());
2401    /// ```
2402    ///
2403    /// [`has_root`]: Path::has_root
2404    #[stable(feature = "rust1", since = "1.0.0")]
2405    #[must_use]
2406    #[allow(deprecated)]
2407    pub fn is_absolute(&self) -> bool {
2408        sys::path::is_absolute(self)
2409    }
2410
2411    /// Returns `true` if the `Path` is relative, i.e., not absolute.
2412    ///
2413    /// See [`is_absolute`]'s documentation for more details.
2414    ///
2415    /// # Examples
2416    ///
2417    /// ```
2418    /// use std::path::Path;
2419    ///
2420    /// assert!(Path::new("foo.txt").is_relative());
2421    /// ```
2422    ///
2423    /// [`is_absolute`]: Path::is_absolute
2424    #[stable(feature = "rust1", since = "1.0.0")]
2425    #[must_use]
2426    #[inline]
2427    pub fn is_relative(&self) -> bool {
2428        !self.is_absolute()
2429    }
2430
2431    pub(crate) fn prefix(&self) -> Option<Prefix<'_>> {
2432        self.components().prefix
2433    }
2434
2435    /// Returns `true` if the `Path` has a root.
2436    ///
2437    /// * On Unix, a path has a root if it begins with `/`.
2438    ///
2439    /// * On Windows, a path has a root if it:
2440    ///     * has no prefix and begins with a separator, e.g., `\windows`
2441    ///     * has a prefix followed by a separator, e.g., `c:\windows` but not `c:windows`
2442    ///     * has any non-disk prefix, e.g., `\\server\share`
2443    ///
2444    /// # Examples
2445    ///
2446    /// ```
2447    /// use std::path::Path;
2448    ///
2449    /// assert!(Path::new("/etc/passwd").has_root());
2450    /// ```
2451    #[stable(feature = "rust1", since = "1.0.0")]
2452    #[must_use]
2453    #[inline]
2454    pub fn has_root(&self) -> bool {
2455        self.components().has_root()
2456    }
2457
2458    /// Returns the `Path` without its final component, if there is one.
2459    ///
2460    /// This means it returns `Some("")` for relative paths with one component.
2461    ///
2462    /// Returns [`None`] if the path terminates in a root or prefix, or if it's
2463    /// the empty string.
2464    ///
2465    /// # Examples
2466    ///
2467    /// ```
2468    /// use std::path::Path;
2469    ///
2470    /// let path = Path::new("/foo/bar");
2471    /// let parent = path.parent().unwrap();
2472    /// assert_eq!(parent, Path::new("/foo"));
2473    ///
2474    /// let grand_parent = parent.parent().unwrap();
2475    /// assert_eq!(grand_parent, Path::new("/"));
2476    /// assert_eq!(grand_parent.parent(), None);
2477    ///
2478    /// let relative_path = Path::new("foo/bar");
2479    /// let parent = relative_path.parent();
2480    /// assert_eq!(parent, Some(Path::new("foo")));
2481    /// let grand_parent = parent.and_then(Path::parent);
2482    /// assert_eq!(grand_parent, Some(Path::new("")));
2483    /// let great_grand_parent = grand_parent.and_then(Path::parent);
2484    /// assert_eq!(great_grand_parent, None);
2485    /// ```
2486    #[stable(feature = "rust1", since = "1.0.0")]
2487    #[doc(alias = "dirname")]
2488    #[must_use]
2489    pub fn parent(&self) -> Option<&Path> {
2490        let mut comps = self.components();
2491        let comp = comps.next_back();
2492        comp.and_then(|p| match p {
2493            Component::Normal(_) | Component::CurDir | Component::ParentDir => {
2494                Some(comps.as_path())
2495            }
2496            _ => None,
2497        })
2498    }
2499
2500    /// Produces an iterator over `Path` and its ancestors.
2501    ///
2502    /// The iterator will yield the `Path` that is returned if the [`parent`] method is used zero
2503    /// or more times. If the [`parent`] method returns [`None`], the iterator will do likewise.
2504    /// The iterator will always yield at least one value, namely `Some(&self)`. Next it will yield
2505    /// `&self.parent()`, `&self.parent().and_then(Path::parent)` and so on.
2506    ///
2507    /// # Examples
2508    ///
2509    /// ```
2510    /// use std::path::Path;
2511    ///
2512    /// let mut ancestors = Path::new("/foo/bar").ancestors();
2513    /// assert_eq!(ancestors.next(), Some(Path::new("/foo/bar")));
2514    /// assert_eq!(ancestors.next(), Some(Path::new("/foo")));
2515    /// assert_eq!(ancestors.next(), Some(Path::new("/")));
2516    /// assert_eq!(ancestors.next(), None);
2517    ///
2518    /// let mut ancestors = Path::new("../foo/bar").ancestors();
2519    /// assert_eq!(ancestors.next(), Some(Path::new("../foo/bar")));
2520    /// assert_eq!(ancestors.next(), Some(Path::new("../foo")));
2521    /// assert_eq!(ancestors.next(), Some(Path::new("..")));
2522    /// assert_eq!(ancestors.next(), Some(Path::new("")));
2523    /// assert_eq!(ancestors.next(), None);
2524    /// ```
2525    ///
2526    /// [`parent`]: Path::parent
2527    #[stable(feature = "path_ancestors", since = "1.28.0")]
2528    #[inline]
2529    pub fn ancestors(&self) -> Ancestors<'_> {
2530        Ancestors { next: Some(&self) }
2531    }
2532
2533    /// Returns the final component of the `Path`, if there is one.
2534    ///
2535    /// If the path is a normal file, this is the file name. If it's the path of a directory, this
2536    /// is the directory name.
2537    ///
2538    /// Returns [`None`] if the path terminates in `..`.
2539    ///
2540    /// # Examples
2541    ///
2542    /// ```
2543    /// use std::path::Path;
2544    /// use std::ffi::OsStr;
2545    ///
2546    /// assert_eq!(Some(OsStr::new("bin")), Path::new("/usr/bin/").file_name());
2547    /// assert_eq!(Some(OsStr::new("foo.txt")), Path::new("tmp/foo.txt").file_name());
2548    /// assert_eq!(Some(OsStr::new("foo.txt")), Path::new("foo.txt/.").file_name());
2549    /// assert_eq!(Some(OsStr::new("foo.txt")), Path::new("foo.txt/.//").file_name());
2550    /// assert_eq!(None, Path::new("foo.txt/..").file_name());
2551    /// assert_eq!(None, Path::new("/").file_name());
2552    /// ```
2553    #[stable(feature = "rust1", since = "1.0.0")]
2554    #[doc(alias = "basename")]
2555    #[must_use]
2556    pub fn file_name(&self) -> Option<&OsStr> {
2557        self.components().next_back().and_then(|p| match p {
2558            Component::Normal(p) => Some(p),
2559            _ => None,
2560        })
2561    }
2562
2563    /// Returns a path that, when joined onto `base`, yields `self`.
2564    ///
2565    /// # Errors
2566    ///
2567    /// If `base` is not a prefix of `self` (i.e., [`starts_with`]
2568    /// returns `false`), returns [`Err`].
2569    ///
2570    /// [`starts_with`]: Path::starts_with
2571    ///
2572    /// # Examples
2573    ///
2574    /// ```
2575    /// use std::path::{Path, PathBuf};
2576    ///
2577    /// let path = Path::new("/test/haha/foo.txt");
2578    ///
2579    /// assert_eq!(path.strip_prefix("/"), Ok(Path::new("test/haha/foo.txt")));
2580    /// assert_eq!(path.strip_prefix("/test"), Ok(Path::new("haha/foo.txt")));
2581    /// assert_eq!(path.strip_prefix("/test/"), Ok(Path::new("haha/foo.txt")));
2582    /// assert_eq!(path.strip_prefix("/test/haha/foo.txt"), Ok(Path::new("")));
2583    /// assert_eq!(path.strip_prefix("/test/haha/foo.txt/"), Ok(Path::new("")));
2584    ///
2585    /// assert!(path.strip_prefix("test").is_err());
2586    /// assert!(path.strip_prefix("/te").is_err());
2587    /// assert!(path.strip_prefix("/haha").is_err());
2588    ///
2589    /// let prefix = PathBuf::from("/test/");
2590    /// assert_eq!(path.strip_prefix(prefix), Ok(Path::new("haha/foo.txt")));
2591    /// ```
2592    #[stable(since = "1.7.0", feature = "path_strip_prefix")]
2593    pub fn strip_prefix<P>(&self, base: P) -> Result<&Path, StripPrefixError>
2594    where
2595        P: AsRef<Path>,
2596    {
2597        self._strip_prefix(base.as_ref())
2598    }
2599
2600    fn _strip_prefix(&self, base: &Path) -> Result<&Path, StripPrefixError> {
2601        iter_after(self.components(), base.components())
2602            .map(|c| c.as_path())
2603            .ok_or(StripPrefixError(()))
2604    }
2605
2606    /// Determines whether `base` is a prefix of `self`.
2607    ///
2608    /// Only considers whole path components to match.
2609    ///
2610    /// # Examples
2611    ///
2612    /// ```
2613    /// use std::path::Path;
2614    ///
2615    /// let path = Path::new("/etc/passwd");
2616    ///
2617    /// assert!(path.starts_with("/etc"));
2618    /// assert!(path.starts_with("/etc/"));
2619    /// assert!(path.starts_with("/etc/passwd"));
2620    /// assert!(path.starts_with("/etc/passwd/")); // extra slash is okay
2621    /// assert!(path.starts_with("/etc/passwd///")); // multiple extra slashes are okay
2622    ///
2623    /// assert!(!path.starts_with("/e"));
2624    /// assert!(!path.starts_with("/etc/passwd.txt"));
2625    ///
2626    /// assert!(!Path::new("/etc/foo.rs").starts_with("/etc/foo"));
2627    /// ```
2628    #[stable(feature = "rust1", since = "1.0.0")]
2629    #[must_use]
2630    pub fn starts_with<P: AsRef<Path>>(&self, base: P) -> bool {
2631        self._starts_with(base.as_ref())
2632    }
2633
2634    fn _starts_with(&self, base: &Path) -> bool {
2635        iter_after(self.components(), base.components()).is_some()
2636    }
2637
2638    /// Determines whether `child` is a suffix of `self`.
2639    ///
2640    /// Only considers whole path components to match.
2641    ///
2642    /// # Examples
2643    ///
2644    /// ```
2645    /// use std::path::Path;
2646    ///
2647    /// let path = Path::new("/etc/resolv.conf");
2648    ///
2649    /// assert!(path.ends_with("resolv.conf"));
2650    /// assert!(path.ends_with("etc/resolv.conf"));
2651    /// assert!(path.ends_with("/etc/resolv.conf"));
2652    ///
2653    /// assert!(!path.ends_with("/resolv.conf"));
2654    /// assert!(!path.ends_with("conf")); // use .extension() instead
2655    /// ```
2656    #[stable(feature = "rust1", since = "1.0.0")]
2657    #[must_use]
2658    pub fn ends_with<P: AsRef<Path>>(&self, child: P) -> bool {
2659        self._ends_with(child.as_ref())
2660    }
2661
2662    fn _ends_with(&self, child: &Path) -> bool {
2663        iter_after(self.components().rev(), child.components().rev()).is_some()
2664    }
2665
2666    /// Extracts the stem (non-extension) portion of [`self.file_name`].
2667    ///
2668    /// [`self.file_name`]: Path::file_name
2669    ///
2670    /// The stem is:
2671    ///
2672    /// * [`None`], if there is no file name;
2673    /// * The entire file name if there is no embedded `.`;
2674    /// * The entire file name if the file name begins with `.` and has no other `.`s within;
2675    /// * Otherwise, the portion of the file name before the final `.`
2676    ///
2677    /// # Examples
2678    ///
2679    /// ```
2680    /// use std::path::Path;
2681    ///
2682    /// assert_eq!("foo", Path::new("foo.rs").file_stem().unwrap());
2683    /// assert_eq!("foo.tar", Path::new("foo.tar.gz").file_stem().unwrap());
2684    /// ```
2685    ///
2686    /// # See Also
2687    /// This method is similar to [`Path::file_prefix`], which extracts the portion of the file name
2688    /// before the *first* `.`
2689    ///
2690    /// [`Path::file_prefix`]: Path::file_prefix
2691    ///
2692    #[stable(feature = "rust1", since = "1.0.0")]
2693    #[must_use]
2694    pub fn file_stem(&self) -> Option<&OsStr> {
2695        self.file_name().map(rsplit_file_at_dot).and_then(|(before, after)| before.or(after))
2696    }
2697
2698    /// Extracts the prefix of [`self.file_name`].
2699    ///
2700    /// The prefix is:
2701    ///
2702    /// * [`None`], if there is no file name;
2703    /// * The entire file name if there is no embedded `.`;
2704    /// * The portion of the file name before the first non-beginning `.`;
2705    /// * The entire file name if the file name begins with `.` and has no other `.`s within;
2706    /// * The portion of the file name before the second `.` if the file name begins with `.`
2707    ///
2708    /// [`self.file_name`]: Path::file_name
2709    ///
2710    /// # Examples
2711    ///
2712    /// ```
2713    /// use std::path::Path;
2714    ///
2715    /// assert_eq!("foo", Path::new("foo.rs").file_prefix().unwrap());
2716    /// assert_eq!("foo", Path::new("foo.tar.gz").file_prefix().unwrap());
2717    /// assert_eq!(".config", Path::new(".config").file_prefix().unwrap());
2718    /// assert_eq!(".config", Path::new(".config.toml").file_prefix().unwrap());
2719    /// ```
2720    ///
2721    /// # See Also
2722    /// This method is similar to [`Path::file_stem`], which extracts the portion of the file name
2723    /// before the *last* `.`
2724    ///
2725    /// [`Path::file_stem`]: Path::file_stem
2726    ///
2727    #[stable(feature = "path_file_prefix", since = "CURRENT_RUSTC_VERSION")]
2728    #[must_use]
2729    pub fn file_prefix(&self) -> Option<&OsStr> {
2730        self.file_name().map(split_file_at_dot).and_then(|(before, _after)| Some(before))
2731    }
2732
2733    /// Extracts the extension (without the leading dot) of [`self.file_name`], if possible.
2734    ///
2735    /// The extension is:
2736    ///
2737    /// * [`None`], if there is no file name;
2738    /// * [`None`], if there is no embedded `.`;
2739    /// * [`None`], if the file name begins with `.` and has no other `.`s within;
2740    /// * Otherwise, the portion of the file name after the final `.`
2741    ///
2742    /// [`self.file_name`]: Path::file_name
2743    ///
2744    /// # Examples
2745    ///
2746    /// ```
2747    /// use std::path::Path;
2748    ///
2749    /// assert_eq!("rs", Path::new("foo.rs").extension().unwrap());
2750    /// assert_eq!("gz", Path::new("foo.tar.gz").extension().unwrap());
2751    /// ```
2752    #[stable(feature = "rust1", since = "1.0.0")]
2753    #[must_use]
2754    pub fn extension(&self) -> Option<&OsStr> {
2755        self.file_name().map(rsplit_file_at_dot).and_then(|(before, after)| before.and(after))
2756    }
2757
2758    /// Creates an owned [`PathBuf`] with `path` adjoined to `self`.
2759    ///
2760    /// If `path` is absolute, it replaces the current path.
2761    ///
2762    /// See [`PathBuf::push`] for more details on what it means to adjoin a path.
2763    ///
2764    /// # Examples
2765    ///
2766    /// ```
2767    /// use std::path::{Path, PathBuf};
2768    ///
2769    /// assert_eq!(Path::new("/etc").join("passwd"), PathBuf::from("/etc/passwd"));
2770    /// assert_eq!(Path::new("/etc").join("/bin/sh"), PathBuf::from("/bin/sh"));
2771    /// ```
2772    #[stable(feature = "rust1", since = "1.0.0")]
2773    #[must_use]
2774    pub fn join<P: AsRef<Path>>(&self, path: P) -> PathBuf {
2775        self._join(path.as_ref())
2776    }
2777
2778    fn _join(&self, path: &Path) -> PathBuf {
2779        let mut buf = self.to_path_buf();
2780        buf.push(path);
2781        buf
2782    }
2783
2784    /// Creates an owned [`PathBuf`] like `self` but with the given file name.
2785    ///
2786    /// See [`PathBuf::set_file_name`] for more details.
2787    ///
2788    /// # Examples
2789    ///
2790    /// ```
2791    /// use std::path::{Path, PathBuf};
2792    ///
2793    /// let path = Path::new("/tmp/foo.png");
2794    /// assert_eq!(path.with_file_name("bar"), PathBuf::from("/tmp/bar"));
2795    /// assert_eq!(path.with_file_name("bar.txt"), PathBuf::from("/tmp/bar.txt"));
2796    ///
2797    /// let path = Path::new("/tmp");
2798    /// assert_eq!(path.with_file_name("var"), PathBuf::from("/var"));
2799    /// ```
2800    #[stable(feature = "rust1", since = "1.0.0")]
2801    #[must_use]
2802    pub fn with_file_name<S: AsRef<OsStr>>(&self, file_name: S) -> PathBuf {
2803        self._with_file_name(file_name.as_ref())
2804    }
2805
2806    fn _with_file_name(&self, file_name: &OsStr) -> PathBuf {
2807        let mut buf = self.to_path_buf();
2808        buf.set_file_name(file_name);
2809        buf
2810    }
2811
2812    /// Creates an owned [`PathBuf`] like `self` but with the given extension.
2813    ///
2814    /// See [`PathBuf::set_extension`] for more details.
2815    ///
2816    /// # Examples
2817    ///
2818    /// ```
2819    /// use std::path::Path;
2820    ///
2821    /// let path = Path::new("foo.rs");
2822    /// assert_eq!(path.with_extension("txt"), Path::new("foo.txt"));
2823    /// assert_eq!(path.with_extension(""), Path::new("foo"));
2824    /// ```
2825    ///
2826    /// Handling multiple extensions:
2827    ///
2828    /// ```
2829    /// use std::path::Path;
2830    ///
2831    /// let path = Path::new("foo.tar.gz");
2832    /// assert_eq!(path.with_extension("xz"), Path::new("foo.tar.xz"));
2833    /// assert_eq!(path.with_extension("").with_extension("txt"), Path::new("foo.txt"));
2834    /// ```
2835    ///
2836    /// Adding an extension where one did not exist:
2837    ///
2838    /// ```
2839    /// use std::path::Path;
2840    ///
2841    /// let path = Path::new("foo");
2842    /// assert_eq!(path.with_extension("rs"), Path::new("foo.rs"));
2843    /// ```
2844    #[stable(feature = "rust1", since = "1.0.0")]
2845    pub fn with_extension<S: AsRef<OsStr>>(&self, extension: S) -> PathBuf {
2846        self._with_extension(extension.as_ref())
2847    }
2848
2849    fn _with_extension(&self, extension: &OsStr) -> PathBuf {
2850        let self_len = self.as_os_str().len();
2851        let self_bytes = self.as_os_str().as_encoded_bytes();
2852
2853        let (new_capacity, slice_to_copy) = match self.extension() {
2854            None => {
2855                // Enough capacity for the extension and the dot
2856                let capacity = self_len + extension.len() + 1;
2857                let whole_path = self_bytes;
2858                (capacity, whole_path)
2859            }
2860            Some(previous_extension) => {
2861                let capacity = self_len + extension.len() - previous_extension.len();
2862                let path_till_dot = &self_bytes[..self_len - previous_extension.len()];
2863                (capacity, path_till_dot)
2864            }
2865        };
2866
2867        let mut new_path = PathBuf::with_capacity(new_capacity);
2868        // SAFETY: The path is empty, so cannot have surrogate halves.
2869        unsafe { new_path.inner.extend_from_slice_unchecked(slice_to_copy) };
2870        new_path.set_extension(extension);
2871        new_path
2872    }
2873
2874    /// Creates an owned [`PathBuf`] like `self` but with the extension added.
2875    ///
2876    /// See [`PathBuf::add_extension`] for more details.
2877    ///
2878    /// # Examples
2879    ///
2880    /// ```
2881    /// use std::path::{Path, PathBuf};
2882    ///
2883    /// let path = Path::new("foo.rs");
2884    /// assert_eq!(path.with_added_extension("txt"), PathBuf::from("foo.rs.txt"));
2885    ///
2886    /// let path = Path::new("foo.tar.gz");
2887    /// assert_eq!(path.with_added_extension(""), PathBuf::from("foo.tar.gz"));
2888    /// assert_eq!(path.with_added_extension("xz"), PathBuf::from("foo.tar.gz.xz"));
2889    /// assert_eq!(path.with_added_extension("").with_added_extension("txt"), PathBuf::from("foo.tar.gz.txt"));
2890    /// ```
2891    #[stable(feature = "path_add_extension", since = "CURRENT_RUSTC_VERSION")]
2892    pub fn with_added_extension<S: AsRef<OsStr>>(&self, extension: S) -> PathBuf {
2893        let mut new_path = self.to_path_buf();
2894        new_path.add_extension(extension);
2895        new_path
2896    }
2897
2898    /// Produces an iterator over the [`Component`]s of the path.
2899    ///
2900    /// When parsing the path, there is a small amount of normalization:
2901    ///
2902    /// * Repeated separators are ignored, so `a/b` and `a//b` both have
2903    ///   `a` and `b` as components.
2904    ///
2905    /// * Occurrences of `.` are normalized away, except if they are at the
2906    ///   beginning of the path. For example, `a/./b`, `a/b/`, `a/b/.` and
2907    ///   `a/b` all have `a` and `b` as components, but `./a/b` starts with
2908    ///   an additional [`CurDir`] component.
2909    ///
2910    /// * A trailing slash is normalized away, `/a/b` and `/a/b/` are equivalent.
2911    ///
2912    /// Note that no other normalization takes place; in particular, `a/c`
2913    /// and `a/b/../c` are distinct, to account for the possibility that `b`
2914    /// is a symbolic link (so its parent isn't `a`).
2915    ///
2916    /// # Examples
2917    ///
2918    /// ```
2919    /// use std::path::{Path, Component};
2920    /// use std::ffi::OsStr;
2921    ///
2922    /// let mut components = Path::new("/tmp/foo.txt").components();
2923    ///
2924    /// assert_eq!(components.next(), Some(Component::RootDir));
2925    /// assert_eq!(components.next(), Some(Component::Normal(OsStr::new("tmp"))));
2926    /// assert_eq!(components.next(), Some(Component::Normal(OsStr::new("foo.txt"))));
2927    /// assert_eq!(components.next(), None)
2928    /// ```
2929    ///
2930    /// [`CurDir`]: Component::CurDir
2931    #[stable(feature = "rust1", since = "1.0.0")]
2932    pub fn components(&self) -> Components<'_> {
2933        let prefix = parse_prefix(self.as_os_str());
2934        Components {
2935            path: self.as_u8_slice(),
2936            prefix,
2937            has_physical_root: has_physical_root(self.as_u8_slice(), prefix),
2938            front: State::Prefix,
2939            back: State::Body,
2940        }
2941    }
2942
2943    /// Produces an iterator over the path's components viewed as [`OsStr`]
2944    /// slices.
2945    ///
2946    /// For more information about the particulars of how the path is separated
2947    /// into components, see [`components`].
2948    ///
2949    /// [`components`]: Path::components
2950    ///
2951    /// # Examples
2952    ///
2953    /// ```
2954    /// use std::path::{self, Path};
2955    /// use std::ffi::OsStr;
2956    ///
2957    /// let mut it = Path::new("/tmp/foo.txt").iter();
2958    /// assert_eq!(it.next(), Some(OsStr::new(&path::MAIN_SEPARATOR.to_string())));
2959    /// assert_eq!(it.next(), Some(OsStr::new("tmp")));
2960    /// assert_eq!(it.next(), Some(OsStr::new("foo.txt")));
2961    /// assert_eq!(it.next(), None)
2962    /// ```
2963    #[stable(feature = "rust1", since = "1.0.0")]
2964    #[inline]
2965    pub fn iter(&self) -> Iter<'_> {
2966        Iter { inner: self.components() }
2967    }
2968
2969    /// Returns an object that implements [`Display`] for safely printing paths
2970    /// that may contain non-Unicode data. This may perform lossy conversion,
2971    /// depending on the platform.  If you would like an implementation which
2972    /// escapes the path please use [`Debug`] instead.
2973    ///
2974    /// [`Display`]: fmt::Display
2975    /// [`Debug`]: fmt::Debug
2976    ///
2977    /// # Examples
2978    ///
2979    /// ```
2980    /// use std::path::Path;
2981    ///
2982    /// let path = Path::new("/tmp/foo.rs");
2983    ///
2984    /// println!("{}", path.display());
2985    /// ```
2986    #[stable(feature = "rust1", since = "1.0.0")]
2987    #[must_use = "this does not display the path, \
2988                  it returns an object that can be displayed"]
2989    #[inline]
2990    pub fn display(&self) -> Display<'_> {
2991        Display { inner: self.inner.display() }
2992    }
2993
2994    /// Queries the file system to get information about a file, directory, etc.
2995    ///
2996    /// This function will traverse symbolic links to query information about the
2997    /// destination file.
2998    ///
2999    /// This is an alias to [`fs::metadata`].
3000    ///
3001    /// # Examples
3002    ///
3003    /// ```no_run
3004    /// use std::path::Path;
3005    ///
3006    /// let path = Path::new("/Minas/tirith");
3007    /// let metadata = path.metadata().expect("metadata call failed");
3008    /// println!("{:?}", metadata.file_type());
3009    /// ```
3010    #[stable(feature = "path_ext", since = "1.5.0")]
3011    #[inline]
3012    pub fn metadata(&self) -> io::Result<fs::Metadata> {
3013        fs::metadata(self)
3014    }
3015
3016    /// Queries the metadata about a file without following symlinks.
3017    ///
3018    /// This is an alias to [`fs::symlink_metadata`].
3019    ///
3020    /// # Examples
3021    ///
3022    /// ```no_run
3023    /// use std::path::Path;
3024    ///
3025    /// let path = Path::new("/Minas/tirith");
3026    /// let metadata = path.symlink_metadata().expect("symlink_metadata call failed");
3027    /// println!("{:?}", metadata.file_type());
3028    /// ```
3029    #[stable(feature = "path_ext", since = "1.5.0")]
3030    #[inline]
3031    pub fn symlink_metadata(&self) -> io::Result<fs::Metadata> {
3032        fs::symlink_metadata(self)
3033    }
3034
3035    /// Returns the canonical, absolute form of the path with all intermediate
3036    /// components normalized and symbolic links resolved.
3037    ///
3038    /// This is an alias to [`fs::canonicalize`].
3039    ///
3040    /// # Examples
3041    ///
3042    /// ```no_run
3043    /// use std::path::{Path, PathBuf};
3044    ///
3045    /// let path = Path::new("/foo/test/../test/bar.rs");
3046    /// assert_eq!(path.canonicalize().unwrap(), PathBuf::from("/foo/test/bar.rs"));
3047    /// ```
3048    #[stable(feature = "path_ext", since = "1.5.0")]
3049    #[inline]
3050    pub fn canonicalize(&self) -> io::Result<PathBuf> {
3051        fs::canonicalize(self)
3052    }
3053
3054    /// Normalize a path, including `..` without traversing the filesystem.
3055    ///
3056    /// Returns an error if normalization would leave leading `..` components.
3057    ///
3058    /// <div class="warning">
3059    ///
3060    /// This function always resolves `..` to the "lexical" parent.
3061    /// That is "a/b/../c" will always resolve to `a/c` which can change the meaning of the path.
3062    /// In particular, `a/c` and `a/b/../c` are distinct on many systems because `b` may be a symbolic link, so its parent isn't `a`.
3063    ///
3064    /// </div>
3065    ///
3066    /// [`path::absolute`](absolute) is an alternative that preserves `..`.
3067    /// Or [`Path::canonicalize`] can be used to resolve any `..` by querying the filesystem.
3068    #[unstable(feature = "normalize_lexically", issue = "134694")]
3069    pub fn normalize_lexically(&self) -> Result<PathBuf, NormalizeError> {
3070        let mut lexical = PathBuf::new();
3071        let mut iter = self.components().peekable();
3072
3073        // Find the root, if any, and add it to the lexical path.
3074        // Here we treat the Windows path "C:\" as a single "root" even though
3075        // `components` splits it into two: (Prefix, RootDir).
3076        let root = match iter.peek() {
3077            Some(Component::ParentDir) => return Err(NormalizeError),
3078            Some(p @ Component::RootDir) | Some(p @ Component::CurDir) => {
3079                lexical.push(p);
3080                iter.next();
3081                lexical.as_os_str().len()
3082            }
3083            Some(Component::Prefix(prefix)) => {
3084                lexical.push(prefix.as_os_str());
3085                iter.next();
3086                if let Some(p @ Component::RootDir) = iter.peek() {
3087                    lexical.push(p);
3088                    iter.next();
3089                }
3090                lexical.as_os_str().len()
3091            }
3092            None => return Ok(PathBuf::new()),
3093            Some(Component::Normal(_)) => 0,
3094        };
3095
3096        for component in iter {
3097            match component {
3098                Component::RootDir => unreachable!(),
3099                Component::Prefix(_) => return Err(NormalizeError),
3100                Component::CurDir => continue,
3101                Component::ParentDir => {
3102                    // It's an error if ParentDir causes us to go above the "root".
3103                    if lexical.as_os_str().len() == root {
3104                        return Err(NormalizeError);
3105                    } else {
3106                        lexical.pop();
3107                    }
3108                }
3109                Component::Normal(path) => lexical.push(path),
3110            }
3111        }
3112        Ok(lexical)
3113    }
3114
3115    /// Reads a symbolic link, returning the file that the link points to.
3116    ///
3117    /// This is an alias to [`fs::read_link`].
3118    ///
3119    /// # Examples
3120    ///
3121    /// ```no_run
3122    /// use std::path::Path;
3123    ///
3124    /// let path = Path::new("/laputa/sky_castle.rs");
3125    /// let path_link = path.read_link().expect("read_link call failed");
3126    /// ```
3127    #[stable(feature = "path_ext", since = "1.5.0")]
3128    #[inline]
3129    pub fn read_link(&self) -> io::Result<PathBuf> {
3130        fs::read_link(self)
3131    }
3132
3133    /// Returns an iterator over the entries within a directory.
3134    ///
3135    /// The iterator will yield instances of <code>[io::Result]<[fs::DirEntry]></code>. New
3136    /// errors may be encountered after an iterator is initially constructed.
3137    ///
3138    /// This is an alias to [`fs::read_dir`].
3139    ///
3140    /// # Examples
3141    ///
3142    /// ```no_run
3143    /// use std::path::Path;
3144    ///
3145    /// let path = Path::new("/laputa");
3146    /// for entry in path.read_dir().expect("read_dir call failed") {
3147    ///     if let Ok(entry) = entry {
3148    ///         println!("{:?}", entry.path());
3149    ///     }
3150    /// }
3151    /// ```
3152    #[stable(feature = "path_ext", since = "1.5.0")]
3153    #[inline]
3154    pub fn read_dir(&self) -> io::Result<fs::ReadDir> {
3155        fs::read_dir(self)
3156    }
3157
3158    /// Returns `true` if the path points at an existing entity.
3159    ///
3160    /// Warning: this method may be error-prone, consider using [`try_exists()`] instead!
3161    /// It also has a risk of introducing time-of-check to time-of-use ([TOCTOU]) bugs.
3162    ///
3163    /// This function will traverse symbolic links to query information about the
3164    /// destination file.
3165    ///
3166    /// If you cannot access the metadata of the file, e.g. because of a
3167    /// permission error or broken symbolic links, this will return `false`.
3168    ///
3169    /// # Examples
3170    ///
3171    /// ```no_run
3172    /// use std::path::Path;
3173    /// assert!(!Path::new("does_not_exist.txt").exists());
3174    /// ```
3175    ///
3176    /// # See Also
3177    ///
3178    /// This is a convenience function that coerces errors to false. If you want to
3179    /// check errors, call [`Path::try_exists`].
3180    ///
3181    /// [`try_exists()`]: Self::try_exists
3182    /// [TOCTOU]: fs#time-of-check-to-time-of-use-toctou
3183    #[stable(feature = "path_ext", since = "1.5.0")]
3184    #[must_use]
3185    #[inline]
3186    pub fn exists(&self) -> bool {
3187        fs::metadata(self).is_ok()
3188    }
3189
3190    /// Returns `Ok(true)` if the path points at an existing entity.
3191    ///
3192    /// This function will traverse symbolic links to query information about the
3193    /// destination file. In case of broken symbolic links this will return `Ok(false)`.
3194    ///
3195    /// [`Path::exists()`] only checks whether or not a path was both found and readable. By
3196    /// contrast, `try_exists` will return `Ok(true)` or `Ok(false)`, respectively, if the path
3197    /// was _verified_ to exist or not exist. If its existence can neither be confirmed nor
3198    /// denied, it will propagate an `Err(_)` instead. This can be the case if e.g. listing
3199    /// permission is denied on one of the parent directories.
3200    ///
3201    /// Note that while this avoids some pitfalls of the `exists()` method, it still can not
3202    /// prevent time-of-check to time-of-use ([TOCTOU]) bugs. You should only use it in scenarios
3203    /// where those bugs are not an issue.
3204    ///
3205    /// This is an alias for [`std::fs::exists`](crate::fs::exists).
3206    ///
3207    /// # Examples
3208    ///
3209    /// ```no_run
3210    /// use std::path::Path;
3211    /// assert!(!Path::new("does_not_exist.txt").try_exists().expect("Can't check existence of file does_not_exist.txt"));
3212    /// assert!(Path::new("/root/secret_file.txt").try_exists().is_err());
3213    /// ```
3214    ///
3215    /// [TOCTOU]: fs#time-of-check-to-time-of-use-toctou
3216    /// [`exists()`]: Self::exists
3217    #[stable(feature = "path_try_exists", since = "1.63.0")]
3218    #[inline]
3219    pub fn try_exists(&self) -> io::Result<bool> {
3220        fs::exists(self)
3221    }
3222
3223    /// Returns `true` if the path exists on disk and is pointing at a regular file.
3224    ///
3225    /// This function will traverse symbolic links to query information about the
3226    /// destination file.
3227    ///
3228    /// If you cannot access the metadata of the file, e.g. because of a
3229    /// permission error or broken symbolic links, this will return `false`.
3230    ///
3231    /// # Examples
3232    ///
3233    /// ```no_run
3234    /// use std::path::Path;
3235    /// assert_eq!(Path::new("./is_a_directory/").is_file(), false);
3236    /// assert_eq!(Path::new("a_file.txt").is_file(), true);
3237    /// ```
3238    ///
3239    /// # See Also
3240    ///
3241    /// This is a convenience function that coerces errors to false. If you want to
3242    /// check errors, call [`fs::metadata`] and handle its [`Result`]. Then call
3243    /// [`fs::Metadata::is_file`] if it was [`Ok`].
3244    ///
3245    /// When the goal is simply to read from (or write to) the source, the most
3246    /// reliable way to test the source can be read (or written to) is to open
3247    /// it. Only using `is_file` can break workflows like `diff <( prog_a )` on
3248    /// a Unix-like system for example. See [`fs::File::open`] or
3249    /// [`fs::OpenOptions::open`] for more information.
3250    #[stable(feature = "path_ext", since = "1.5.0")]
3251    #[must_use]
3252    pub fn is_file(&self) -> bool {
3253        fs::metadata(self).map(|m| m.is_file()).unwrap_or(false)
3254    }
3255
3256    /// Returns `true` if the path exists on disk and is pointing at a directory.
3257    ///
3258    /// This function will traverse symbolic links to query information about the
3259    /// destination file.
3260    ///
3261    /// If you cannot access the metadata of the file, e.g. because of a
3262    /// permission error or broken symbolic links, this will return `false`.
3263    ///
3264    /// # Examples
3265    ///
3266    /// ```no_run
3267    /// use std::path::Path;
3268    /// assert_eq!(Path::new("./is_a_directory/").is_dir(), true);
3269    /// assert_eq!(Path::new("a_file.txt").is_dir(), false);
3270    /// ```
3271    ///
3272    /// # See Also
3273    ///
3274    /// This is a convenience function that coerces errors to false. If you want to
3275    /// check errors, call [`fs::metadata`] and handle its [`Result`]. Then call
3276    /// [`fs::Metadata::is_dir`] if it was [`Ok`].
3277    #[stable(feature = "path_ext", since = "1.5.0")]
3278    #[must_use]
3279    pub fn is_dir(&self) -> bool {
3280        fs::metadata(self).map(|m| m.is_dir()).unwrap_or(false)
3281    }
3282
3283    /// Returns `true` if the path exists on disk and is pointing at a symbolic link.
3284    ///
3285    /// This function will not traverse symbolic links.
3286    /// In case of a broken symbolic link this will also return true.
3287    ///
3288    /// If you cannot access the directory containing the file, e.g., because of a
3289    /// permission error, this will return false.
3290    ///
3291    /// # Examples
3292    ///
3293    /// ```rust,no_run
3294    /// # #[cfg(unix)] {
3295    /// use std::path::Path;
3296    /// use std::os::unix::fs::symlink;
3297    ///
3298    /// let link_path = Path::new("link");
3299    /// symlink("/origin_does_not_exist/", link_path).unwrap();
3300    /// assert_eq!(link_path.is_symlink(), true);
3301    /// assert_eq!(link_path.exists(), false);
3302    /// # }
3303    /// ```
3304    ///
3305    /// # See Also
3306    ///
3307    /// This is a convenience function that coerces errors to false. If you want to
3308    /// check errors, call [`fs::symlink_metadata`] and handle its [`Result`]. Then call
3309    /// [`fs::Metadata::is_symlink`] if it was [`Ok`].
3310    #[must_use]
3311    #[stable(feature = "is_symlink", since = "1.58.0")]
3312    pub fn is_symlink(&self) -> bool {
3313        fs::symlink_metadata(self).map(|m| m.is_symlink()).unwrap_or(false)
3314    }
3315
3316    /// Converts a [`Box<Path>`](Box) into a [`PathBuf`] without copying or
3317    /// allocating.
3318    #[stable(feature = "into_boxed_path", since = "1.20.0")]
3319    #[must_use = "`self` will be dropped if the result is not used"]
3320    pub fn into_path_buf(self: Box<Self>) -> PathBuf {
3321        let rw = Box::into_raw(self) as *mut OsStr;
3322        let inner = unsafe { Box::from_raw(rw) };
3323        PathBuf { inner: OsString::from(inner) }
3324    }
3325}
3326
3327#[unstable(feature = "clone_to_uninit", issue = "126799")]
3328unsafe impl CloneToUninit for Path {
3329    #[inline]
3330    #[cfg_attr(debug_assertions, track_caller)]
3331    unsafe fn clone_to_uninit(&self, dst: *mut u8) {
3332        // SAFETY: Path is just a transparent wrapper around OsStr
3333        unsafe { self.inner.clone_to_uninit(dst) }
3334    }
3335}
3336
3337#[stable(feature = "rust1", since = "1.0.0")]
3338#[rustc_const_unstable(feature = "const_convert", issue = "143773")]
3339impl const AsRef<OsStr> for Path {
3340    #[inline]
3341    fn as_ref(&self) -> &OsStr {
3342        &self.inner
3343    }
3344}
3345
3346#[stable(feature = "rust1", since = "1.0.0")]
3347impl fmt::Debug for Path {
3348    fn fmt(&self, formatter: &mut fmt::Formatter<'_>) -> fmt::Result {
3349        fmt::Debug::fmt(&self.inner, formatter)
3350    }
3351}
3352
3353/// Helper struct for safely printing paths with [`format!`] and `{}`.
3354///
3355/// A [`Path`] might contain non-Unicode data. This `struct` implements the
3356/// [`Display`] trait in a way that mitigates that. It is created by the
3357/// [`display`](Path::display) method on [`Path`]. This may perform lossy
3358/// conversion, depending on the platform. If you would like an implementation
3359/// which escapes the path please use [`Debug`] instead.
3360///
3361/// # Examples
3362///
3363/// ```
3364/// use std::path::Path;
3365///
3366/// let path = Path::new("/tmp/foo.rs");
3367///
3368/// println!("{}", path.display());
3369/// ```
3370///
3371/// [`Display`]: fmt::Display
3372/// [`format!`]: crate::format
3373#[stable(feature = "rust1", since = "1.0.0")]
3374pub struct Display<'a> {
3375    inner: os_str::Display<'a>,
3376}
3377
3378#[stable(feature = "rust1", since = "1.0.0")]
3379impl fmt::Debug for Display<'_> {
3380    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
3381        fmt::Debug::fmt(&self.inner, f)
3382    }
3383}
3384
3385#[stable(feature = "rust1", since = "1.0.0")]
3386impl fmt::Display for Display<'_> {
3387    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
3388        fmt::Display::fmt(&self.inner, f)
3389    }
3390}
3391
3392#[stable(feature = "rust1", since = "1.0.0")]
3393impl PartialEq for Path {
3394    #[inline]
3395    fn eq(&self, other: &Path) -> bool {
3396        self.components() == other.components()
3397    }
3398}
3399
3400#[stable(feature = "eq_str_for_path", since = "CURRENT_RUSTC_VERSION")]
3401impl cmp::PartialEq<str> for Path {
3402    #[inline]
3403    fn eq(&self, other: &str) -> bool {
3404        let other: &OsStr = other.as_ref();
3405        self == other
3406    }
3407}
3408
3409#[stable(feature = "eq_str_for_path", since = "CURRENT_RUSTC_VERSION")]
3410impl cmp::PartialEq<Path> for str {
3411    #[inline]
3412    fn eq(&self, other: &Path) -> bool {
3413        other == self
3414    }
3415}
3416
3417#[stable(feature = "eq_str_for_path", since = "CURRENT_RUSTC_VERSION")]
3418impl cmp::PartialEq<String> for Path {
3419    #[inline]
3420    fn eq(&self, other: &String) -> bool {
3421        self == &*other
3422    }
3423}
3424
3425#[stable(feature = "eq_str_for_path", since = "CURRENT_RUSTC_VERSION")]
3426impl cmp::PartialEq<Path> for String {
3427    #[inline]
3428    fn eq(&self, other: &Path) -> bool {
3429        other == self
3430    }
3431}
3432
3433#[stable(feature = "rust1", since = "1.0.0")]
3434impl Hash for Path {
3435    fn hash<H: Hasher>(&self, h: &mut H) {
3436        let bytes = self.as_u8_slice();
3437        let (prefix_len, verbatim) = match parse_prefix(&self.inner) {
3438            Some(prefix) => {
3439                prefix.hash(h);
3440                (prefix.len(), prefix.is_verbatim())
3441            }
3442            None => (0, false),
3443        };
3444        let bytes = &bytes[prefix_len..];
3445
3446        let mut component_start = 0;
3447        // track some extra state to avoid prefix collisions.
3448        // ["foo", "bar"] and ["foobar"], will have the same payload bytes
3449        // but result in different chunk_bits
3450        let mut chunk_bits: usize = 0;
3451
3452        for i in 0..bytes.len() {
3453            let is_sep = if verbatim { is_verbatim_sep(bytes[i]) } else { is_sep_byte(bytes[i]) };
3454            if is_sep {
3455                if i > component_start {
3456                    let to_hash = &bytes[component_start..i];
3457                    chunk_bits = chunk_bits.wrapping_add(to_hash.len());
3458                    chunk_bits = chunk_bits.rotate_right(2);
3459                    h.write(to_hash);
3460                }
3461
3462                // skip over separator and optionally a following CurDir item
3463                // since components() would normalize these away.
3464                component_start = i + 1;
3465
3466                let tail = &bytes[component_start..];
3467
3468                if !verbatim {
3469                    component_start += match tail {
3470                        [b'.'] => 1,
3471                        [b'.', sep, ..] if is_sep_byte(*sep) => 1,
3472                        _ => 0,
3473                    };
3474                }
3475            }
3476        }
3477
3478        if component_start < bytes.len() {
3479            let to_hash = &bytes[component_start..];
3480            chunk_bits = chunk_bits.wrapping_add(to_hash.len());
3481            chunk_bits = chunk_bits.rotate_right(2);
3482            h.write(to_hash);
3483        }
3484
3485        h.write_usize(chunk_bits);
3486    }
3487}
3488
3489#[stable(feature = "rust1", since = "1.0.0")]
3490impl Eq for Path {}
3491
3492#[stable(feature = "rust1", since = "1.0.0")]
3493impl PartialOrd for Path {
3494    #[inline]
3495    fn partial_cmp(&self, other: &Path) -> Option<cmp::Ordering> {
3496        Some(compare_components(self.components(), other.components()))
3497    }
3498}
3499
3500#[stable(feature = "rust1", since = "1.0.0")]
3501impl Ord for Path {
3502    #[inline]
3503    fn cmp(&self, other: &Path) -> cmp::Ordering {
3504        compare_components(self.components(), other.components())
3505    }
3506}
3507
3508#[stable(feature = "rust1", since = "1.0.0")]
3509#[rustc_const_unstable(feature = "const_convert", issue = "143773")]
3510impl const AsRef<Path> for Path {
3511    #[inline]
3512    fn as_ref(&self) -> &Path {
3513        self
3514    }
3515}
3516
3517#[stable(feature = "rust1", since = "1.0.0")]
3518#[rustc_const_unstable(feature = "const_convert", issue = "143773")]
3519impl const AsRef<Path> for OsStr {
3520    #[inline]
3521    fn as_ref(&self) -> &Path {
3522        Path::new(self)
3523    }
3524}
3525
3526#[stable(feature = "cow_os_str_as_ref_path", since = "1.8.0")]
3527impl AsRef<Path> for Cow<'_, OsStr> {
3528    #[inline]
3529    fn as_ref(&self) -> &Path {
3530        Path::new(self)
3531    }
3532}
3533
3534#[stable(feature = "rust1", since = "1.0.0")]
3535impl AsRef<Path> for OsString {
3536    #[inline]
3537    fn as_ref(&self) -> &Path {
3538        Path::new(self)
3539    }
3540}
3541
3542#[stable(feature = "rust1", since = "1.0.0")]
3543impl AsRef<Path> for str {
3544    #[inline]
3545    fn as_ref(&self) -> &Path {
3546        Path::new(self)
3547    }
3548}
3549
3550#[stable(feature = "rust1", since = "1.0.0")]
3551impl AsRef<Path> for String {
3552    #[inline]
3553    fn as_ref(&self) -> &Path {
3554        Path::new(self)
3555    }
3556}
3557
3558#[stable(feature = "rust1", since = "1.0.0")]
3559impl AsRef<Path> for PathBuf {
3560    #[inline]
3561    fn as_ref(&self) -> &Path {
3562        self
3563    }
3564}
3565
3566#[stable(feature = "path_into_iter", since = "1.6.0")]
3567impl<'a> IntoIterator for &'a PathBuf {
3568    type Item = &'a OsStr;
3569    type IntoIter = Iter<'a>;
3570    #[inline]
3571    fn into_iter(self) -> Iter<'a> {
3572        self.iter()
3573    }
3574}
3575
3576#[stable(feature = "path_into_iter", since = "1.6.0")]
3577impl<'a> IntoIterator for &'a Path {
3578    type Item = &'a OsStr;
3579    type IntoIter = Iter<'a>;
3580    #[inline]
3581    fn into_iter(self) -> Iter<'a> {
3582        self.iter()
3583    }
3584}
3585
3586macro_rules! impl_cmp {
3587    (<$($life:lifetime),*> $lhs:ty, $rhs: ty) => {
3588        #[stable(feature = "partialeq_path", since = "1.6.0")]
3589        impl<$($life),*> PartialEq<$rhs> for $lhs {
3590            #[inline]
3591            fn eq(&self, other: &$rhs) -> bool {
3592                <Path as PartialEq>::eq(self, other)
3593            }
3594        }
3595
3596        #[stable(feature = "partialeq_path", since = "1.6.0")]
3597        impl<$($life),*> PartialEq<$lhs> for $rhs {
3598            #[inline]
3599            fn eq(&self, other: &$lhs) -> bool {
3600                <Path as PartialEq>::eq(self, other)
3601            }
3602        }
3603
3604        #[stable(feature = "cmp_path", since = "1.8.0")]
3605        impl<$($life),*> PartialOrd<$rhs> for $lhs {
3606            #[inline]
3607            fn partial_cmp(&self, other: &$rhs) -> Option<cmp::Ordering> {
3608                <Path as PartialOrd>::partial_cmp(self, other)
3609            }
3610        }
3611
3612        #[stable(feature = "cmp_path", since = "1.8.0")]
3613        impl<$($life),*> PartialOrd<$lhs> for $rhs {
3614            #[inline]
3615            fn partial_cmp(&self, other: &$lhs) -> Option<cmp::Ordering> {
3616                <Path as PartialOrd>::partial_cmp(self, other)
3617            }
3618        }
3619    };
3620}
3621
3622impl_cmp!(<> PathBuf, Path);
3623impl_cmp!(<'a> PathBuf, &'a Path);
3624impl_cmp!(<'a> Cow<'a, Path>, Path);
3625impl_cmp!(<'a, 'b> Cow<'a, Path>, &'b Path);
3626impl_cmp!(<'a> Cow<'a, Path>, PathBuf);
3627
3628macro_rules! impl_cmp_os_str {
3629    (<$($life:lifetime),*> $lhs:ty, $rhs: ty) => {
3630        #[stable(feature = "cmp_path", since = "1.8.0")]
3631        impl<$($life),*> PartialEq<$rhs> for $lhs {
3632            #[inline]
3633            fn eq(&self, other: &$rhs) -> bool {
3634                <Path as PartialEq>::eq(self, other.as_ref())
3635            }
3636        }
3637
3638        #[stable(feature = "cmp_path", since = "1.8.0")]
3639        impl<$($life),*> PartialEq<$lhs> for $rhs {
3640            #[inline]
3641            fn eq(&self, other: &$lhs) -> bool {
3642                <Path as PartialEq>::eq(self.as_ref(), other)
3643            }
3644        }
3645
3646        #[stable(feature = "cmp_path", since = "1.8.0")]
3647        impl<$($life),*> PartialOrd<$rhs> for $lhs {
3648            #[inline]
3649            fn partial_cmp(&self, other: &$rhs) -> Option<cmp::Ordering> {
3650                <Path as PartialOrd>::partial_cmp(self, other.as_ref())
3651            }
3652        }
3653
3654        #[stable(feature = "cmp_path", since = "1.8.0")]
3655        impl<$($life),*> PartialOrd<$lhs> for $rhs {
3656            #[inline]
3657            fn partial_cmp(&self, other: &$lhs) -> Option<cmp::Ordering> {
3658                <Path as PartialOrd>::partial_cmp(self.as_ref(), other)
3659            }
3660        }
3661    };
3662}
3663
3664impl_cmp_os_str!(<> PathBuf, OsStr);
3665impl_cmp_os_str!(<'a> PathBuf, &'a OsStr);
3666impl_cmp_os_str!(<'a> PathBuf, Cow<'a, OsStr>);
3667impl_cmp_os_str!(<> PathBuf, OsString);
3668impl_cmp_os_str!(<> Path, OsStr);
3669impl_cmp_os_str!(<'a> Path, &'a OsStr);
3670impl_cmp_os_str!(<'a> Path, Cow<'a, OsStr>);
3671impl_cmp_os_str!(<> Path, OsString);
3672impl_cmp_os_str!(<'a> &'a Path, OsStr);
3673impl_cmp_os_str!(<'a, 'b> &'a Path, Cow<'b, OsStr>);
3674impl_cmp_os_str!(<'a> &'a Path, OsString);
3675impl_cmp_os_str!(<'a> Cow<'a, Path>, OsStr);
3676impl_cmp_os_str!(<'a, 'b> Cow<'a, Path>, &'b OsStr);
3677impl_cmp_os_str!(<'a> Cow<'a, Path>, OsString);
3678
3679#[stable(since = "1.7.0", feature = "strip_prefix")]
3680impl fmt::Display for StripPrefixError {
3681    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
3682        "prefix not found".fmt(f)
3683    }
3684}
3685
3686#[stable(since = "1.7.0", feature = "strip_prefix")]
3687impl Error for StripPrefixError {}
3688
3689#[unstable(feature = "normalize_lexically", issue = "134694")]
3690impl fmt::Display for NormalizeError {
3691    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
3692        f.write_str("parent reference `..` points outside of base directory")
3693    }
3694}
3695#[unstable(feature = "normalize_lexically", issue = "134694")]
3696impl Error for NormalizeError {}
3697
3698/// Makes the path absolute without accessing the filesystem.
3699///
3700/// If the path is relative, the current directory is used as the base directory.
3701/// All intermediate components will be resolved according to platform-specific
3702/// rules, but unlike [`canonicalize`][crate::fs::canonicalize], this does not
3703/// resolve symlinks and may succeed even if the path does not exist.
3704///
3705/// If the `path` is empty or getting the
3706/// [current directory][crate::env::current_dir] fails, then an error will be
3707/// returned.
3708///
3709/// # Platform-specific behavior
3710///
3711/// On POSIX platforms, the path is resolved using [POSIX semantics][posix-semantics],
3712/// except that it stops short of resolving symlinks. This means it will keep `..`
3713/// components and trailing slashes.
3714///
3715/// On Windows, for verbatim paths, this will simply return the path as given. For other
3716/// paths, this is currently equivalent to calling
3717/// [`GetFullPathNameW`][windows-path].
3718///
3719/// On Cygwin, this is currently equivalent to calling [`cygwin_conv_path`][cygwin-path]
3720/// with mode `CCP_WIN_A_TO_POSIX`, and then being processed like other POSIX platforms.
3721/// If a Windows path is given, it will be converted to an absolute POSIX path without
3722/// keeping `..`.
3723///
3724/// Note that these [may change in the future][changes].
3725///
3726/// # Errors
3727///
3728/// This function may return an error in the following situations:
3729///
3730/// * If `path` is syntactically invalid; in particular, if it is empty.
3731/// * If getting the [current directory][crate::env::current_dir] fails.
3732///
3733/// # Examples
3734///
3735/// ## POSIX paths
3736///
3737/// ```
3738/// # #[cfg(unix)]
3739/// fn main() -> std::io::Result<()> {
3740///     use std::path::{self, Path};
3741///
3742///     // Relative to absolute
3743///     let absolute = path::absolute("foo/./bar")?;
3744///     assert!(absolute.ends_with("foo/bar"));
3745///
3746///     // Absolute to absolute
3747///     let absolute = path::absolute("/foo//test/.././bar.rs")?;
3748///     assert_eq!(absolute, Path::new("/foo/test/../bar.rs"));
3749///     Ok(())
3750/// }
3751/// # #[cfg(not(unix))]
3752/// # fn main() {}
3753/// ```
3754///
3755/// ## Windows paths
3756///
3757/// ```
3758/// # #[cfg(windows)]
3759/// fn main() -> std::io::Result<()> {
3760///     use std::path::{self, Path};
3761///
3762///     // Relative to absolute
3763///     let absolute = path::absolute("foo/./bar")?;
3764///     assert!(absolute.ends_with(r"foo\bar"));
3765///
3766///     // Absolute to absolute
3767///     let absolute = path::absolute(r"C:\foo//test\..\./bar.rs")?;
3768///
3769///     assert_eq!(absolute, Path::new(r"C:\foo\bar.rs"));
3770///     Ok(())
3771/// }
3772/// # #[cfg(not(windows))]
3773/// # fn main() {}
3774/// ```
3775///
3776/// Note that this [may change in the future][changes].
3777///
3778/// [changes]: io#platform-specific-behavior
3779/// [posix-semantics]: https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap04.html#tag_04_13
3780/// [windows-path]: https://docs.microsoft.com/en-us/windows/win32/api/fileapi/nf-fileapi-getfullpathnamew
3781/// [cygwin-path]: https://cygwin.com/cygwin-api/func-cygwin-conv-path.html
3782#[stable(feature = "absolute_path", since = "1.79.0")]
3783pub fn absolute<P: AsRef<Path>>(path: P) -> io::Result<PathBuf> {
3784    let path = path.as_ref();
3785    if path.as_os_str().is_empty() {
3786        Err(io::const_error!(io::ErrorKind::InvalidInput, "cannot make an empty path absolute"))
3787    } else {
3788        sys::path::absolute(path)
3789    }
3790}