core/
cell.rs

1//! Shareable mutable containers.
2//!
3//! Rust memory safety is based on this rule: Given an object `T`, it is only possible to
4//! have one of the following:
5//!
6//! - Several immutable references (`&T`) to the object (also known as **aliasing**).
7//! - One mutable reference (`&mut T`) to the object (also known as **mutability**).
8//!
9//! This is enforced by the Rust compiler. However, there are situations where this rule is not
10//! flexible enough. Sometimes it is required to have multiple references to an object and yet
11//! mutate it.
12//!
13//! Shareable mutable containers exist to permit mutability in a controlled manner, even in the
14//! presence of aliasing. [`Cell<T>`], [`RefCell<T>`], and [`OnceCell<T>`] allow doing this in
15//! a single-threaded way—they do not implement [`Sync`]. (If you need to do aliasing and
16//! mutation among multiple threads, [`Mutex<T>`], [`RwLock<T>`], [`OnceLock<T>`] or [`atomic`]
17//! types are the correct data structures to do so).
18//!
19//! Values of the `Cell<T>`, `RefCell<T>`, and `OnceCell<T>` types may be mutated through shared
20//! references (i.e. the common `&T` type), whereas most Rust types can only be mutated through
21//! unique (`&mut T`) references. We say these cell types provide 'interior mutability'
22//! (mutable via `&T`), in contrast with typical Rust types that exhibit 'inherited mutability'
23//! (mutable only via `&mut T`).
24//!
25//! Cell types come in four flavors: `Cell<T>`, `RefCell<T>`, `OnceCell<T>`, and `LazyCell<T>`.
26//! Each provides a different way of providing safe interior mutability.
27//!
28//! ## `Cell<T>`
29//!
30//! [`Cell<T>`] implements interior mutability by moving values in and out of the cell. That is, an
31//! `&mut T` to the inner value can never be obtained, and the value itself cannot be directly
32//! obtained without replacing it with something else. Both of these rules ensure that there is
33//! never more than one reference pointing to the inner value. This type provides the following
34//! methods:
35//!
36//!  - For types that implement [`Copy`], the [`get`](Cell::get) method retrieves the current
37//!    interior value by duplicating it.
38//!  - For types that implement [`Default`], the [`take`](Cell::take) method replaces the current
39//!    interior value with [`Default::default()`] and returns the replaced value.
40//!  - All types have:
41//!    - [`replace`](Cell::replace): replaces the current interior value and returns the replaced
42//!      value.
43//!    - [`into_inner`](Cell::into_inner): this method consumes the `Cell<T>` and returns the
44//!      interior value.
45//!    - [`set`](Cell::set): this method replaces the interior value, dropping the replaced value.
46//!
47//! `Cell<T>` is typically used for more simple types where copying or moving values isn't too
48//! resource intensive (e.g. numbers), and should usually be preferred over other cell types when
49//! possible. For larger and non-copy types, `RefCell` provides some advantages.
50//!
51//! ## `RefCell<T>`
52//!
53//! [`RefCell<T>`] uses Rust's lifetimes to implement "dynamic borrowing", a process whereby one can
54//! claim temporary, exclusive, mutable access to the inner value. Borrows for `RefCell<T>`s are
55//! tracked at _runtime_, unlike Rust's native reference types which are entirely tracked
56//! statically, at compile time.
57//!
58//! An immutable reference to a `RefCell`'s inner value (`&T`) can be obtained with
59//! [`borrow`](`RefCell::borrow`), and a mutable borrow (`&mut T`) can be obtained with
60//! [`borrow_mut`](`RefCell::borrow_mut`). When these functions are called, they first verify that
61//! Rust's borrow rules will be satisfied: any number of immutable borrows are allowed or a
62//! single mutable borrow is allowed, but never both. If a borrow is attempted that would violate
63//! these rules, the thread will panic.
64//!
65//! The corresponding [`Sync`] version of `RefCell<T>` is [`RwLock<T>`].
66//!
67//! ## `OnceCell<T>`
68//!
69//! [`OnceCell<T>`] is somewhat of a hybrid of `Cell` and `RefCell` that works for values that
70//! typically only need to be set once. This means that a reference `&T` can be obtained without
71//! moving or copying the inner value (unlike `Cell`) but also without runtime checks (unlike
72//! `RefCell`). However, its value can also not be updated once set unless you have a mutable
73//! reference to the `OnceCell`.
74//!
75//! `OnceCell` provides the following methods:
76//!
77//! - [`get`](OnceCell::get): obtain a reference to the inner value
78//! - [`set`](OnceCell::set): set the inner value if it is unset (returns a `Result`)
79//! - [`get_or_init`](OnceCell::get_or_init): return the inner value, initializing it if needed
80//! - [`get_mut`](OnceCell::get_mut): provide a mutable reference to the inner value, only available
81//!   if you have a mutable reference to the cell itself.
82//!
83//! The corresponding [`Sync`] version of `OnceCell<T>` is [`OnceLock<T>`].
84//!
85//! ## `LazyCell<T, F>`
86//!
87//! A common pattern with OnceCell is, for a given OnceCell, to use the same function on every
88//! call to [`OnceCell::get_or_init`] with that cell. This is what is offered by [`LazyCell`],
89//! which pairs cells of `T` with functions of `F`, and always calls `F` before it yields `&T`.
90//! This happens implicitly by simply attempting to dereference the LazyCell to get its contents,
91//! so its use is much more transparent with a place which has been initialized by a constant.
92//!
93//! More complicated patterns that don't fit this description can be built on `OnceCell<T>` instead.
94//!
95//! `LazyCell` works by providing an implementation of `impl Deref` that calls the function,
96//! so you can just use it by dereference (e.g. `*lazy_cell` or `lazy_cell.deref()`).
97//!
98//! The corresponding [`Sync`] version of `LazyCell<T, F>` is [`LazyLock<T, F>`].
99//!
100//! # When to choose interior mutability
101//!
102//! The more common inherited mutability, where one must have unique access to mutate a value, is
103//! one of the key language elements that enables Rust to reason strongly about pointer aliasing,
104//! statically preventing crash bugs. Because of that, inherited mutability is preferred, and
105//! interior mutability is something of a last resort. Since cell types enable mutation where it
106//! would otherwise be disallowed though, there are occasions when interior mutability might be
107//! appropriate, or even *must* be used, e.g.
108//!
109//! * Introducing mutability 'inside' of something immutable
110//! * Implementation details of logically-immutable methods.
111//! * Mutating implementations of [`Clone`].
112//!
113//! ## Introducing mutability 'inside' of something immutable
114//!
115//! Many shared smart pointer types, including [`Rc<T>`] and [`Arc<T>`], provide containers that can
116//! be cloned and shared between multiple parties. Because the contained values may be
117//! multiply-aliased, they can only be borrowed with `&`, not `&mut`. Without cells it would be
118//! impossible to mutate data inside of these smart pointers at all.
119//!
120//! It's very common then to put a `RefCell<T>` inside shared pointer types to reintroduce
121//! mutability:
122//!
123//! ```
124//! use std::cell::{RefCell, RefMut};
125//! use std::collections::HashMap;
126//! use std::rc::Rc;
127//!
128//! fn main() {
129//!     let shared_map: Rc<RefCell<_>> = Rc::new(RefCell::new(HashMap::new()));
130//!     // Create a new block to limit the scope of the dynamic borrow
131//!     {
132//!         let mut map: RefMut<'_, _> = shared_map.borrow_mut();
133//!         map.insert("africa", 92388);
134//!         map.insert("kyoto", 11837);
135//!         map.insert("piccadilly", 11826);
136//!         map.insert("marbles", 38);
137//!     }
138//!
139//!     // Note that if we had not let the previous borrow of the cache fall out
140//!     // of scope then the subsequent borrow would cause a dynamic thread panic.
141//!     // This is the major hazard of using `RefCell`.
142//!     let total: i32 = shared_map.borrow().values().sum();
143//!     println!("{total}");
144//! }
145//! ```
146//!
147//! Note that this example uses `Rc<T>` and not `Arc<T>`. `RefCell<T>`s are for single-threaded
148//! scenarios. Consider using [`RwLock<T>`] or [`Mutex<T>`] if you need shared mutability in a
149//! multi-threaded situation.
150//!
151//! ## Implementation details of logically-immutable methods
152//!
153//! Occasionally it may be desirable not to expose in an API that there is mutation happening
154//! "under the hood". This may be because logically the operation is immutable, but e.g., caching
155//! forces the implementation to perform mutation; or because you must employ mutation to implement
156//! a trait method that was originally defined to take `&self`.
157//!
158//! ```
159//! # #![allow(dead_code)]
160//! use std::cell::OnceCell;
161//!
162//! struct Graph {
163//!     edges: Vec<(i32, i32)>,
164//!     span_tree_cache: OnceCell<Vec<(i32, i32)>>
165//! }
166//!
167//! impl Graph {
168//!     fn minimum_spanning_tree(&self) -> Vec<(i32, i32)> {
169//!         self.span_tree_cache
170//!             .get_or_init(|| self.calc_span_tree())
171//!             .clone()
172//!     }
173//!
174//!     fn calc_span_tree(&self) -> Vec<(i32, i32)> {
175//!         // Expensive computation goes here
176//!         vec![]
177//!     }
178//! }
179//! ```
180//!
181//! ## Mutating implementations of `Clone`
182//!
183//! This is simply a special - but common - case of the previous: hiding mutability for operations
184//! that appear to be immutable. The [`clone`](Clone::clone) method is expected to not change the
185//! source value, and is declared to take `&self`, not `&mut self`. Therefore, any mutation that
186//! happens in the `clone` method must use cell types. For example, [`Rc<T>`] maintains its
187//! reference counts within a `Cell<T>`.
188//!
189//! ```
190//! use std::cell::Cell;
191//! use std::ptr::NonNull;
192//! use std::process::abort;
193//! use std::marker::PhantomData;
194//!
195//! struct Rc<T: ?Sized> {
196//!     ptr: NonNull<RcInner<T>>,
197//!     phantom: PhantomData<RcInner<T>>,
198//! }
199//!
200//! struct RcInner<T: ?Sized> {
201//!     strong: Cell<usize>,
202//!     refcount: Cell<usize>,
203//!     value: T,
204//! }
205//!
206//! impl<T: ?Sized> Clone for Rc<T> {
207//!     fn clone(&self) -> Rc<T> {
208//!         self.inc_strong();
209//!         Rc {
210//!             ptr: self.ptr,
211//!             phantom: PhantomData,
212//!         }
213//!     }
214//! }
215//!
216//! trait RcInnerPtr<T: ?Sized> {
217//!
218//!     fn inner(&self) -> &RcInner<T>;
219//!
220//!     fn strong(&self) -> usize {
221//!         self.inner().strong.get()
222//!     }
223//!
224//!     fn inc_strong(&self) {
225//!         self.inner()
226//!             .strong
227//!             .set(self.strong()
228//!                      .checked_add(1)
229//!                      .unwrap_or_else(|| abort() ));
230//!     }
231//! }
232//!
233//! impl<T: ?Sized> RcInnerPtr<T> for Rc<T> {
234//!    fn inner(&self) -> &RcInner<T> {
235//!        unsafe {
236//!            self.ptr.as_ref()
237//!        }
238//!    }
239//! }
240//! ```
241//!
242//! [`Arc<T>`]: ../../std/sync/struct.Arc.html
243//! [`Rc<T>`]: ../../std/rc/struct.Rc.html
244//! [`RwLock<T>`]: ../../std/sync/struct.RwLock.html
245//! [`Mutex<T>`]: ../../std/sync/struct.Mutex.html
246//! [`OnceLock<T>`]: ../../std/sync/struct.OnceLock.html
247//! [`LazyLock<T, F>`]: ../../std/sync/struct.LazyLock.html
248//! [`Sync`]: ../../std/marker/trait.Sync.html
249//! [`atomic`]: crate::sync::atomic
250
251#![stable(feature = "rust1", since = "1.0.0")]
252
253use crate::cmp::Ordering;
254use crate::fmt::{self, Debug, Display};
255use crate::marker::{PhantomData, Unsize};
256use crate::mem;
257use crate::ops::{CoerceUnsized, Deref, DerefMut, DerefPure, DispatchFromDyn};
258use crate::panic::const_panic;
259use crate::pin::PinCoerceUnsized;
260use crate::ptr::{self, NonNull};
261
262mod lazy;
263mod once;
264
265#[stable(feature = "lazy_cell", since = "1.80.0")]
266pub use lazy::LazyCell;
267#[stable(feature = "once_cell", since = "1.70.0")]
268pub use once::OnceCell;
269
270/// A mutable memory location.
271///
272/// # Memory layout
273///
274/// `Cell<T>` has the same [memory layout and caveats as
275/// `UnsafeCell<T>`](UnsafeCell#memory-layout). In particular, this means that
276/// `Cell<T>` has the same in-memory representation as its inner type `T`.
277///
278/// # Examples
279///
280/// In this example, you can see that `Cell<T>` enables mutation inside an
281/// immutable struct. In other words, it enables "interior mutability".
282///
283/// ```
284/// use std::cell::Cell;
285///
286/// struct SomeStruct {
287///     regular_field: u8,
288///     special_field: Cell<u8>,
289/// }
290///
291/// let my_struct = SomeStruct {
292///     regular_field: 0,
293///     special_field: Cell::new(1),
294/// };
295///
296/// let new_value = 100;
297///
298/// // ERROR: `my_struct` is immutable
299/// // my_struct.regular_field = new_value;
300///
301/// // WORKS: although `my_struct` is immutable, `special_field` is a `Cell`,
302/// // which can always be mutated
303/// my_struct.special_field.set(new_value);
304/// assert_eq!(my_struct.special_field.get(), new_value);
305/// ```
306///
307/// See the [module-level documentation](self) for more.
308#[rustc_diagnostic_item = "Cell"]
309#[stable(feature = "rust1", since = "1.0.0")]
310#[repr(transparent)]
311#[rustc_pub_transparent]
312pub struct Cell<T: ?Sized> {
313    value: UnsafeCell<T>,
314}
315
316#[stable(feature = "rust1", since = "1.0.0")]
317unsafe impl<T: ?Sized> Send for Cell<T> where T: Send {}
318
319// Note that this negative impl isn't strictly necessary for correctness,
320// as `Cell` wraps `UnsafeCell`, which is itself `!Sync`.
321// However, given how important `Cell`'s `!Sync`-ness is,
322// having an explicit negative impl is nice for documentation purposes
323// and results in nicer error messages.
324#[stable(feature = "rust1", since = "1.0.0")]
325impl<T: ?Sized> !Sync for Cell<T> {}
326
327#[stable(feature = "rust1", since = "1.0.0")]
328impl<T: Copy> Clone for Cell<T> {
329    #[inline]
330    fn clone(&self) -> Cell<T> {
331        Cell::new(self.get())
332    }
333}
334
335#[stable(feature = "rust1", since = "1.0.0")]
336#[rustc_const_unstable(feature = "const_default", issue = "143894")]
337impl<T: [const] Default> const Default for Cell<T> {
338    /// Creates a `Cell<T>`, with the `Default` value for T.
339    #[inline]
340    fn default() -> Cell<T> {
341        Cell::new(Default::default())
342    }
343}
344
345#[stable(feature = "rust1", since = "1.0.0")]
346impl<T: PartialEq + Copy> PartialEq for Cell<T> {
347    #[inline]
348    fn eq(&self, other: &Cell<T>) -> bool {
349        self.get() == other.get()
350    }
351}
352
353#[stable(feature = "cell_eq", since = "1.2.0")]
354impl<T: Eq + Copy> Eq for Cell<T> {}
355
356#[stable(feature = "cell_ord", since = "1.10.0")]
357impl<T: PartialOrd + Copy> PartialOrd for Cell<T> {
358    #[inline]
359    fn partial_cmp(&self, other: &Cell<T>) -> Option<Ordering> {
360        self.get().partial_cmp(&other.get())
361    }
362
363    #[inline]
364    fn lt(&self, other: &Cell<T>) -> bool {
365        self.get() < other.get()
366    }
367
368    #[inline]
369    fn le(&self, other: &Cell<T>) -> bool {
370        self.get() <= other.get()
371    }
372
373    #[inline]
374    fn gt(&self, other: &Cell<T>) -> bool {
375        self.get() > other.get()
376    }
377
378    #[inline]
379    fn ge(&self, other: &Cell<T>) -> bool {
380        self.get() >= other.get()
381    }
382}
383
384#[stable(feature = "cell_ord", since = "1.10.0")]
385impl<T: Ord + Copy> Ord for Cell<T> {
386    #[inline]
387    fn cmp(&self, other: &Cell<T>) -> Ordering {
388        self.get().cmp(&other.get())
389    }
390}
391
392#[stable(feature = "cell_from", since = "1.12.0")]
393#[rustc_const_unstable(feature = "const_convert", issue = "143773")]
394impl<T> const From<T> for Cell<T> {
395    /// Creates a new `Cell<T>` containing the given value.
396    fn from(t: T) -> Cell<T> {
397        Cell::new(t)
398    }
399}
400
401impl<T> Cell<T> {
402    /// Creates a new `Cell` containing the given value.
403    ///
404    /// # Examples
405    ///
406    /// ```
407    /// use std::cell::Cell;
408    ///
409    /// let c = Cell::new(5);
410    /// ```
411    #[stable(feature = "rust1", since = "1.0.0")]
412    #[rustc_const_stable(feature = "const_cell_new", since = "1.24.0")]
413    #[inline]
414    pub const fn new(value: T) -> Cell<T> {
415        Cell { value: UnsafeCell::new(value) }
416    }
417
418    /// Sets the contained value.
419    ///
420    /// # Examples
421    ///
422    /// ```
423    /// use std::cell::Cell;
424    ///
425    /// let c = Cell::new(5);
426    ///
427    /// c.set(10);
428    /// ```
429    #[inline]
430    #[stable(feature = "rust1", since = "1.0.0")]
431    pub fn set(&self, val: T) {
432        self.replace(val);
433    }
434
435    /// Swaps the values of two `Cell`s.
436    ///
437    /// The difference with `std::mem::swap` is that this function doesn't
438    /// require a `&mut` reference.
439    ///
440    /// # Panics
441    ///
442    /// This function will panic if `self` and `other` are different `Cell`s that partially overlap.
443    /// (Using just standard library methods, it is impossible to create such partially overlapping `Cell`s.
444    /// However, unsafe code is allowed to e.g. create two `&Cell<[i32; 2]>` that partially overlap.)
445    ///
446    /// # Examples
447    ///
448    /// ```
449    /// use std::cell::Cell;
450    ///
451    /// let c1 = Cell::new(5i32);
452    /// let c2 = Cell::new(10i32);
453    /// c1.swap(&c2);
454    /// assert_eq!(10, c1.get());
455    /// assert_eq!(5, c2.get());
456    /// ```
457    #[inline]
458    #[stable(feature = "move_cell", since = "1.17.0")]
459    pub fn swap(&self, other: &Self) {
460        // This function documents that it *will* panic, and intrinsics::is_nonoverlapping doesn't
461        // do the check in const, so trying to use it here would be inviting unnecessary fragility.
462        fn is_nonoverlapping<T>(src: *const T, dst: *const T) -> bool {
463            let src_usize = src.addr();
464            let dst_usize = dst.addr();
465            let diff = src_usize.abs_diff(dst_usize);
466            diff >= size_of::<T>()
467        }
468
469        if ptr::eq(self, other) {
470            // Swapping wouldn't change anything.
471            return;
472        }
473        if !is_nonoverlapping(self, other) {
474            // See <https://github.com/rust-lang/rust/issues/80778> for why we need to stop here.
475            panic!("`Cell::swap` on overlapping non-identical `Cell`s");
476        }
477        // SAFETY: This can be risky if called from separate threads, but `Cell`
478        // is `!Sync` so this won't happen. This also won't invalidate any
479        // pointers since `Cell` makes sure nothing else will be pointing into
480        // either of these `Cell`s. We also excluded shenanigans like partially overlapping `Cell`s,
481        // so `swap` will just properly copy two full values of type `T` back and forth.
482        unsafe {
483            mem::swap(&mut *self.value.get(), &mut *other.value.get());
484        }
485    }
486
487    /// Replaces the contained value with `val`, and returns the old contained value.
488    ///
489    /// # Examples
490    ///
491    /// ```
492    /// use std::cell::Cell;
493    ///
494    /// let cell = Cell::new(5);
495    /// assert_eq!(cell.get(), 5);
496    /// assert_eq!(cell.replace(10), 5);
497    /// assert_eq!(cell.get(), 10);
498    /// ```
499    #[inline]
500    #[stable(feature = "move_cell", since = "1.17.0")]
501    #[rustc_const_stable(feature = "const_cell", since = "1.88.0")]
502    #[rustc_confusables("swap")]
503    pub const fn replace(&self, val: T) -> T {
504        // SAFETY: This can cause data races if called from a separate thread,
505        // but `Cell` is `!Sync` so this won't happen.
506        mem::replace(unsafe { &mut *self.value.get() }, val)
507    }
508
509    /// Unwraps the value, consuming the cell.
510    ///
511    /// # Examples
512    ///
513    /// ```
514    /// use std::cell::Cell;
515    ///
516    /// let c = Cell::new(5);
517    /// let five = c.into_inner();
518    ///
519    /// assert_eq!(five, 5);
520    /// ```
521    #[stable(feature = "move_cell", since = "1.17.0")]
522    #[rustc_const_stable(feature = "const_cell_into_inner", since = "1.83.0")]
523    #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
524    pub const fn into_inner(self) -> T {
525        self.value.into_inner()
526    }
527}
528
529impl<T: Copy> Cell<T> {
530    /// Returns a copy of the contained value.
531    ///
532    /// # Examples
533    ///
534    /// ```
535    /// use std::cell::Cell;
536    ///
537    /// let c = Cell::new(5);
538    ///
539    /// let five = c.get();
540    /// ```
541    #[inline]
542    #[stable(feature = "rust1", since = "1.0.0")]
543    #[rustc_const_stable(feature = "const_cell", since = "1.88.0")]
544    pub const fn get(&self) -> T {
545        // SAFETY: This can cause data races if called from a separate thread,
546        // but `Cell` is `!Sync` so this won't happen.
547        unsafe { *self.value.get() }
548    }
549
550    /// Updates the contained value using a function.
551    ///
552    /// # Examples
553    ///
554    /// ```
555    /// use std::cell::Cell;
556    ///
557    /// let c = Cell::new(5);
558    /// c.update(|x| x + 1);
559    /// assert_eq!(c.get(), 6);
560    /// ```
561    #[inline]
562    #[stable(feature = "cell_update", since = "1.88.0")]
563    pub fn update(&self, f: impl FnOnce(T) -> T) {
564        let old = self.get();
565        self.set(f(old));
566    }
567}
568
569impl<T: ?Sized> Cell<T> {
570    /// Returns a raw pointer to the underlying data in this cell.
571    ///
572    /// # Examples
573    ///
574    /// ```
575    /// use std::cell::Cell;
576    ///
577    /// let c = Cell::new(5);
578    ///
579    /// let ptr = c.as_ptr();
580    /// ```
581    #[inline]
582    #[stable(feature = "cell_as_ptr", since = "1.12.0")]
583    #[rustc_const_stable(feature = "const_cell_as_ptr", since = "1.32.0")]
584    #[rustc_as_ptr]
585    #[rustc_never_returns_null_ptr]
586    pub const fn as_ptr(&self) -> *mut T {
587        self.value.get()
588    }
589
590    /// Returns a mutable reference to the underlying data.
591    ///
592    /// This call borrows `Cell` mutably (at compile-time) which guarantees
593    /// that we possess the only reference.
594    ///
595    /// However be cautious: this method expects `self` to be mutable, which is
596    /// generally not the case when using a `Cell`. If you require interior
597    /// mutability by reference, consider using `RefCell` which provides
598    /// run-time checked mutable borrows through its [`borrow_mut`] method.
599    ///
600    /// [`borrow_mut`]: RefCell::borrow_mut()
601    ///
602    /// # Examples
603    ///
604    /// ```
605    /// use std::cell::Cell;
606    ///
607    /// let mut c = Cell::new(5);
608    /// *c.get_mut() += 1;
609    ///
610    /// assert_eq!(c.get(), 6);
611    /// ```
612    #[inline]
613    #[stable(feature = "cell_get_mut", since = "1.11.0")]
614    #[rustc_const_stable(feature = "const_cell", since = "1.88.0")]
615    pub const fn get_mut(&mut self) -> &mut T {
616        self.value.get_mut()
617    }
618
619    /// Returns a `&Cell<T>` from a `&mut T`
620    ///
621    /// # Examples
622    ///
623    /// ```
624    /// use std::cell::Cell;
625    ///
626    /// let slice: &mut [i32] = &mut [1, 2, 3];
627    /// let cell_slice: &Cell<[i32]> = Cell::from_mut(slice);
628    /// let slice_cell: &[Cell<i32>] = cell_slice.as_slice_of_cells();
629    ///
630    /// assert_eq!(slice_cell.len(), 3);
631    /// ```
632    #[inline]
633    #[stable(feature = "as_cell", since = "1.37.0")]
634    #[rustc_const_stable(feature = "const_cell", since = "1.88.0")]
635    pub const fn from_mut(t: &mut T) -> &Cell<T> {
636        // SAFETY: `&mut` ensures unique access.
637        unsafe { &*(t as *mut T as *const Cell<T>) }
638    }
639}
640
641impl<T: Default> Cell<T> {
642    /// Takes the value of the cell, leaving `Default::default()` in its place.
643    ///
644    /// # Examples
645    ///
646    /// ```
647    /// use std::cell::Cell;
648    ///
649    /// let c = Cell::new(5);
650    /// let five = c.take();
651    ///
652    /// assert_eq!(five, 5);
653    /// assert_eq!(c.into_inner(), 0);
654    /// ```
655    #[stable(feature = "move_cell", since = "1.17.0")]
656    pub fn take(&self) -> T {
657        self.replace(Default::default())
658    }
659}
660
661#[unstable(feature = "coerce_unsized", issue = "18598")]
662impl<T: CoerceUnsized<U>, U> CoerceUnsized<Cell<U>> for Cell<T> {}
663
664// Allow types that wrap `Cell` to also implement `DispatchFromDyn`
665// and become dyn-compatible method receivers.
666// Note that currently `Cell` itself cannot be a method receiver
667// because it does not implement Deref.
668// In other words:
669// `self: Cell<&Self>` won't work
670// `self: CellWrapper<Self>` becomes possible
671#[unstable(feature = "dispatch_from_dyn", issue = "none")]
672impl<T: DispatchFromDyn<U>, U> DispatchFromDyn<Cell<U>> for Cell<T> {}
673
674impl<T> Cell<[T]> {
675    /// Returns a `&[Cell<T>]` from a `&Cell<[T]>`
676    ///
677    /// # Examples
678    ///
679    /// ```
680    /// use std::cell::Cell;
681    ///
682    /// let slice: &mut [i32] = &mut [1, 2, 3];
683    /// let cell_slice: &Cell<[i32]> = Cell::from_mut(slice);
684    /// let slice_cell: &[Cell<i32>] = cell_slice.as_slice_of_cells();
685    ///
686    /// assert_eq!(slice_cell.len(), 3);
687    /// ```
688    #[stable(feature = "as_cell", since = "1.37.0")]
689    #[rustc_const_stable(feature = "const_cell", since = "1.88.0")]
690    pub const fn as_slice_of_cells(&self) -> &[Cell<T>] {
691        // SAFETY: `Cell<T>` has the same memory layout as `T`.
692        unsafe { &*(self as *const Cell<[T]> as *const [Cell<T>]) }
693    }
694}
695
696impl<T, const N: usize> Cell<[T; N]> {
697    /// Returns a `&[Cell<T>; N]` from a `&Cell<[T; N]>`
698    ///
699    /// # Examples
700    ///
701    /// ```
702    /// use std::cell::Cell;
703    ///
704    /// let mut array: [i32; 3] = [1, 2, 3];
705    /// let cell_array: &Cell<[i32; 3]> = Cell::from_mut(&mut array);
706    /// let array_cell: &[Cell<i32>; 3] = cell_array.as_array_of_cells();
707    /// ```
708    #[stable(feature = "as_array_of_cells", since = "CURRENT_RUSTC_VERSION")]
709    #[rustc_const_stable(feature = "as_array_of_cells", since = "CURRENT_RUSTC_VERSION")]
710    pub const fn as_array_of_cells(&self) -> &[Cell<T>; N] {
711        // SAFETY: `Cell<T>` has the same memory layout as `T`.
712        unsafe { &*(self as *const Cell<[T; N]> as *const [Cell<T>; N]) }
713    }
714}
715
716/// A mutable memory location with dynamically checked borrow rules
717///
718/// See the [module-level documentation](self) for more.
719#[rustc_diagnostic_item = "RefCell"]
720#[stable(feature = "rust1", since = "1.0.0")]
721pub struct RefCell<T: ?Sized> {
722    borrow: Cell<BorrowCounter>,
723    // Stores the location of the earliest currently active borrow.
724    // This gets updated whenever we go from having zero borrows
725    // to having a single borrow. When a borrow occurs, this gets included
726    // in the generated `BorrowError`/`BorrowMutError`
727    #[cfg(feature = "debug_refcell")]
728    borrowed_at: Cell<Option<&'static crate::panic::Location<'static>>>,
729    value: UnsafeCell<T>,
730}
731
732/// An error returned by [`RefCell::try_borrow`].
733#[stable(feature = "try_borrow", since = "1.13.0")]
734#[non_exhaustive]
735#[derive(Debug)]
736pub struct BorrowError {
737    #[cfg(feature = "debug_refcell")]
738    location: &'static crate::panic::Location<'static>,
739}
740
741#[stable(feature = "try_borrow", since = "1.13.0")]
742impl Display for BorrowError {
743    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
744        #[cfg(feature = "debug_refcell")]
745        let res = write!(
746            f,
747            "RefCell already mutably borrowed; a previous borrow was at {}",
748            self.location
749        );
750
751        #[cfg(not(feature = "debug_refcell"))]
752        let res = Display::fmt("RefCell already mutably borrowed", f);
753
754        res
755    }
756}
757
758/// An error returned by [`RefCell::try_borrow_mut`].
759#[stable(feature = "try_borrow", since = "1.13.0")]
760#[non_exhaustive]
761#[derive(Debug)]
762pub struct BorrowMutError {
763    #[cfg(feature = "debug_refcell")]
764    location: &'static crate::panic::Location<'static>,
765}
766
767#[stable(feature = "try_borrow", since = "1.13.0")]
768impl Display for BorrowMutError {
769    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
770        #[cfg(feature = "debug_refcell")]
771        let res = write!(f, "RefCell already borrowed; a previous borrow was at {}", self.location);
772
773        #[cfg(not(feature = "debug_refcell"))]
774        let res = Display::fmt("RefCell already borrowed", f);
775
776        res
777    }
778}
779
780// This ensures the panicking code is outlined from `borrow_mut` for `RefCell`.
781#[cfg_attr(not(feature = "panic_immediate_abort"), inline(never))]
782#[track_caller]
783#[cold]
784const fn panic_already_borrowed(err: BorrowMutError) -> ! {
785    const_panic!(
786        "RefCell already borrowed",
787        "{err}",
788        err: BorrowMutError = err,
789    )
790}
791
792// This ensures the panicking code is outlined from `borrow` for `RefCell`.
793#[cfg_attr(not(feature = "panic_immediate_abort"), inline(never))]
794#[track_caller]
795#[cold]
796const fn panic_already_mutably_borrowed(err: BorrowError) -> ! {
797    const_panic!(
798        "RefCell already mutably borrowed",
799        "{err}",
800        err: BorrowError = err,
801    )
802}
803
804// Positive values represent the number of `Ref` active. Negative values
805// represent the number of `RefMut` active. Multiple `RefMut`s can only be
806// active at a time if they refer to distinct, nonoverlapping components of a
807// `RefCell` (e.g., different ranges of a slice).
808//
809// `Ref` and `RefMut` are both two words in size, and so there will likely never
810// be enough `Ref`s or `RefMut`s in existence to overflow half of the `usize`
811// range. Thus, a `BorrowCounter` will probably never overflow or underflow.
812// However, this is not a guarantee, as a pathological program could repeatedly
813// create and then mem::forget `Ref`s or `RefMut`s. Thus, all code must
814// explicitly check for overflow and underflow in order to avoid unsafety, or at
815// least behave correctly in the event that overflow or underflow happens (e.g.,
816// see BorrowRef::new).
817type BorrowCounter = isize;
818const UNUSED: BorrowCounter = 0;
819
820#[inline(always)]
821const fn is_writing(x: BorrowCounter) -> bool {
822    x < UNUSED
823}
824
825#[inline(always)]
826const fn is_reading(x: BorrowCounter) -> bool {
827    x > UNUSED
828}
829
830impl<T> RefCell<T> {
831    /// Creates a new `RefCell` containing `value`.
832    ///
833    /// # Examples
834    ///
835    /// ```
836    /// use std::cell::RefCell;
837    ///
838    /// let c = RefCell::new(5);
839    /// ```
840    #[stable(feature = "rust1", since = "1.0.0")]
841    #[rustc_const_stable(feature = "const_refcell_new", since = "1.24.0")]
842    #[inline]
843    pub const fn new(value: T) -> RefCell<T> {
844        RefCell {
845            value: UnsafeCell::new(value),
846            borrow: Cell::new(UNUSED),
847            #[cfg(feature = "debug_refcell")]
848            borrowed_at: Cell::new(None),
849        }
850    }
851
852    /// Consumes the `RefCell`, returning the wrapped value.
853    ///
854    /// # Examples
855    ///
856    /// ```
857    /// use std::cell::RefCell;
858    ///
859    /// let c = RefCell::new(5);
860    ///
861    /// let five = c.into_inner();
862    /// ```
863    #[stable(feature = "rust1", since = "1.0.0")]
864    #[rustc_const_stable(feature = "const_cell_into_inner", since = "1.83.0")]
865    #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
866    #[inline]
867    pub const fn into_inner(self) -> T {
868        // Since this function takes `self` (the `RefCell`) by value, the
869        // compiler statically verifies that it is not currently borrowed.
870        self.value.into_inner()
871    }
872
873    /// Replaces the wrapped value with a new one, returning the old value,
874    /// without deinitializing either one.
875    ///
876    /// This function corresponds to [`std::mem::replace`](../mem/fn.replace.html).
877    ///
878    /// # Panics
879    ///
880    /// Panics if the value is currently borrowed.
881    ///
882    /// # Examples
883    ///
884    /// ```
885    /// use std::cell::RefCell;
886    /// let cell = RefCell::new(5);
887    /// let old_value = cell.replace(6);
888    /// assert_eq!(old_value, 5);
889    /// assert_eq!(cell, RefCell::new(6));
890    /// ```
891    #[inline]
892    #[stable(feature = "refcell_replace", since = "1.24.0")]
893    #[track_caller]
894    #[rustc_confusables("swap")]
895    #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
896    pub const fn replace(&self, t: T) -> T {
897        mem::replace(&mut self.borrow_mut(), t)
898    }
899
900    /// Replaces the wrapped value with a new one computed from `f`, returning
901    /// the old value, without deinitializing either one.
902    ///
903    /// # Panics
904    ///
905    /// Panics if the value is currently borrowed.
906    ///
907    /// # Examples
908    ///
909    /// ```
910    /// use std::cell::RefCell;
911    /// let cell = RefCell::new(5);
912    /// let old_value = cell.replace_with(|&mut old| old + 1);
913    /// assert_eq!(old_value, 5);
914    /// assert_eq!(cell, RefCell::new(6));
915    /// ```
916    #[inline]
917    #[stable(feature = "refcell_replace_swap", since = "1.35.0")]
918    #[track_caller]
919    pub fn replace_with<F: FnOnce(&mut T) -> T>(&self, f: F) -> T {
920        let mut_borrow = &mut *self.borrow_mut();
921        let replacement = f(mut_borrow);
922        mem::replace(mut_borrow, replacement)
923    }
924
925    /// Swaps the wrapped value of `self` with the wrapped value of `other`,
926    /// without deinitializing either one.
927    ///
928    /// This function corresponds to [`std::mem::swap`](../mem/fn.swap.html).
929    ///
930    /// # Panics
931    ///
932    /// Panics if the value in either `RefCell` is currently borrowed, or
933    /// if `self` and `other` point to the same `RefCell`.
934    ///
935    /// # Examples
936    ///
937    /// ```
938    /// use std::cell::RefCell;
939    /// let c = RefCell::new(5);
940    /// let d = RefCell::new(6);
941    /// c.swap(&d);
942    /// assert_eq!(c, RefCell::new(6));
943    /// assert_eq!(d, RefCell::new(5));
944    /// ```
945    #[inline]
946    #[stable(feature = "refcell_swap", since = "1.24.0")]
947    #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
948    pub const fn swap(&self, other: &Self) {
949        mem::swap(&mut *self.borrow_mut(), &mut *other.borrow_mut())
950    }
951}
952
953impl<T: ?Sized> RefCell<T> {
954    /// Immutably borrows the wrapped value.
955    ///
956    /// The borrow lasts until the returned `Ref` exits scope. Multiple
957    /// immutable borrows can be taken out at the same time.
958    ///
959    /// # Panics
960    ///
961    /// Panics if the value is currently mutably borrowed. For a non-panicking variant, use
962    /// [`try_borrow`](#method.try_borrow).
963    ///
964    /// # Examples
965    ///
966    /// ```
967    /// use std::cell::RefCell;
968    ///
969    /// let c = RefCell::new(5);
970    ///
971    /// let borrowed_five = c.borrow();
972    /// let borrowed_five2 = c.borrow();
973    /// ```
974    ///
975    /// An example of panic:
976    ///
977    /// ```should_panic
978    /// use std::cell::RefCell;
979    ///
980    /// let c = RefCell::new(5);
981    ///
982    /// let m = c.borrow_mut();
983    /// let b = c.borrow(); // this causes a panic
984    /// ```
985    #[stable(feature = "rust1", since = "1.0.0")]
986    #[inline]
987    #[track_caller]
988    #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
989    pub const fn borrow(&self) -> Ref<'_, T> {
990        match self.try_borrow() {
991            Ok(b) => b,
992            Err(err) => panic_already_mutably_borrowed(err),
993        }
994    }
995
996    /// Immutably borrows the wrapped value, returning an error if the value is currently mutably
997    /// borrowed.
998    ///
999    /// The borrow lasts until the returned `Ref` exits scope. Multiple immutable borrows can be
1000    /// taken out at the same time.
1001    ///
1002    /// This is the non-panicking variant of [`borrow`](#method.borrow).
1003    ///
1004    /// # Examples
1005    ///
1006    /// ```
1007    /// use std::cell::RefCell;
1008    ///
1009    /// let c = RefCell::new(5);
1010    ///
1011    /// {
1012    ///     let m = c.borrow_mut();
1013    ///     assert!(c.try_borrow().is_err());
1014    /// }
1015    ///
1016    /// {
1017    ///     let m = c.borrow();
1018    ///     assert!(c.try_borrow().is_ok());
1019    /// }
1020    /// ```
1021    #[stable(feature = "try_borrow", since = "1.13.0")]
1022    #[inline]
1023    #[cfg_attr(feature = "debug_refcell", track_caller)]
1024    #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1025    pub const fn try_borrow(&self) -> Result<Ref<'_, T>, BorrowError> {
1026        match BorrowRef::new(&self.borrow) {
1027            Some(b) => {
1028                #[cfg(feature = "debug_refcell")]
1029                {
1030                    // `borrowed_at` is always the *first* active borrow
1031                    if b.borrow.get() == 1 {
1032                        self.borrowed_at.replace(Some(crate::panic::Location::caller()));
1033                    }
1034                }
1035
1036                // SAFETY: `BorrowRef` ensures that there is only immutable access
1037                // to the value while borrowed.
1038                let value = unsafe { NonNull::new_unchecked(self.value.get()) };
1039                Ok(Ref { value, borrow: b })
1040            }
1041            None => Err(BorrowError {
1042                // If a borrow occurred, then we must already have an outstanding borrow,
1043                // so `borrowed_at` will be `Some`
1044                #[cfg(feature = "debug_refcell")]
1045                location: self.borrowed_at.get().unwrap(),
1046            }),
1047        }
1048    }
1049
1050    /// Mutably borrows the wrapped value.
1051    ///
1052    /// The borrow lasts until the returned `RefMut` or all `RefMut`s derived
1053    /// from it exit scope. The value cannot be borrowed while this borrow is
1054    /// active.
1055    ///
1056    /// # Panics
1057    ///
1058    /// Panics if the value is currently borrowed. For a non-panicking variant, use
1059    /// [`try_borrow_mut`](#method.try_borrow_mut).
1060    ///
1061    /// # Examples
1062    ///
1063    /// ```
1064    /// use std::cell::RefCell;
1065    ///
1066    /// let c = RefCell::new("hello".to_owned());
1067    ///
1068    /// *c.borrow_mut() = "bonjour".to_owned();
1069    ///
1070    /// assert_eq!(&*c.borrow(), "bonjour");
1071    /// ```
1072    ///
1073    /// An example of panic:
1074    ///
1075    /// ```should_panic
1076    /// use std::cell::RefCell;
1077    ///
1078    /// let c = RefCell::new(5);
1079    /// let m = c.borrow();
1080    ///
1081    /// let b = c.borrow_mut(); // this causes a panic
1082    /// ```
1083    #[stable(feature = "rust1", since = "1.0.0")]
1084    #[inline]
1085    #[track_caller]
1086    #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1087    pub const fn borrow_mut(&self) -> RefMut<'_, T> {
1088        match self.try_borrow_mut() {
1089            Ok(b) => b,
1090            Err(err) => panic_already_borrowed(err),
1091        }
1092    }
1093
1094    /// Mutably borrows the wrapped value, returning an error if the value is currently borrowed.
1095    ///
1096    /// The borrow lasts until the returned `RefMut` or all `RefMut`s derived
1097    /// from it exit scope. The value cannot be borrowed while this borrow is
1098    /// active.
1099    ///
1100    /// This is the non-panicking variant of [`borrow_mut`](#method.borrow_mut).
1101    ///
1102    /// # Examples
1103    ///
1104    /// ```
1105    /// use std::cell::RefCell;
1106    ///
1107    /// let c = RefCell::new(5);
1108    ///
1109    /// {
1110    ///     let m = c.borrow();
1111    ///     assert!(c.try_borrow_mut().is_err());
1112    /// }
1113    ///
1114    /// assert!(c.try_borrow_mut().is_ok());
1115    /// ```
1116    #[stable(feature = "try_borrow", since = "1.13.0")]
1117    #[inline]
1118    #[cfg_attr(feature = "debug_refcell", track_caller)]
1119    #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1120    pub const fn try_borrow_mut(&self) -> Result<RefMut<'_, T>, BorrowMutError> {
1121        match BorrowRefMut::new(&self.borrow) {
1122            Some(b) => {
1123                #[cfg(feature = "debug_refcell")]
1124                {
1125                    self.borrowed_at.replace(Some(crate::panic::Location::caller()));
1126                }
1127
1128                // SAFETY: `BorrowRefMut` guarantees unique access.
1129                let value = unsafe { NonNull::new_unchecked(self.value.get()) };
1130                Ok(RefMut { value, borrow: b, marker: PhantomData })
1131            }
1132            None => Err(BorrowMutError {
1133                // If a borrow occurred, then we must already have an outstanding borrow,
1134                // so `borrowed_at` will be `Some`
1135                #[cfg(feature = "debug_refcell")]
1136                location: self.borrowed_at.get().unwrap(),
1137            }),
1138        }
1139    }
1140
1141    /// Returns a raw pointer to the underlying data in this cell.
1142    ///
1143    /// # Examples
1144    ///
1145    /// ```
1146    /// use std::cell::RefCell;
1147    ///
1148    /// let c = RefCell::new(5);
1149    ///
1150    /// let ptr = c.as_ptr();
1151    /// ```
1152    #[inline]
1153    #[stable(feature = "cell_as_ptr", since = "1.12.0")]
1154    #[rustc_as_ptr]
1155    #[rustc_never_returns_null_ptr]
1156    #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1157    pub const fn as_ptr(&self) -> *mut T {
1158        self.value.get()
1159    }
1160
1161    /// Returns a mutable reference to the underlying data.
1162    ///
1163    /// Since this method borrows `RefCell` mutably, it is statically guaranteed
1164    /// that no borrows to the underlying data exist. The dynamic checks inherent
1165    /// in [`borrow_mut`] and most other methods of `RefCell` are therefore
1166    /// unnecessary. Note that this method does not reset the borrowing state if borrows were previously leaked
1167    /// (e.g., via [`forget()`] on a [`Ref`] or [`RefMut`]). For that purpose,
1168    /// consider using the unstable [`undo_leak`] method.
1169    ///
1170    /// This method can only be called if `RefCell` can be mutably borrowed,
1171    /// which in general is only the case directly after the `RefCell` has
1172    /// been created. In these situations, skipping the aforementioned dynamic
1173    /// borrowing checks may yield better ergonomics and runtime-performance.
1174    ///
1175    /// In most situations where `RefCell` is used, it can't be borrowed mutably.
1176    /// Use [`borrow_mut`] to get mutable access to the underlying data then.
1177    ///
1178    /// [`borrow_mut`]: RefCell::borrow_mut()
1179    /// [`forget()`]: mem::forget
1180    /// [`undo_leak`]: RefCell::undo_leak()
1181    ///
1182    /// # Examples
1183    ///
1184    /// ```
1185    /// use std::cell::RefCell;
1186    ///
1187    /// let mut c = RefCell::new(5);
1188    /// *c.get_mut() += 1;
1189    ///
1190    /// assert_eq!(c, RefCell::new(6));
1191    /// ```
1192    #[inline]
1193    #[stable(feature = "cell_get_mut", since = "1.11.0")]
1194    #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1195    pub const fn get_mut(&mut self) -> &mut T {
1196        self.value.get_mut()
1197    }
1198
1199    /// Undo the effect of leaked guards on the borrow state of the `RefCell`.
1200    ///
1201    /// This call is similar to [`get_mut`] but more specialized. It borrows `RefCell` mutably to
1202    /// ensure no borrows exist and then resets the state tracking shared borrows. This is relevant
1203    /// if some `Ref` or `RefMut` borrows have been leaked.
1204    ///
1205    /// [`get_mut`]: RefCell::get_mut()
1206    ///
1207    /// # Examples
1208    ///
1209    /// ```
1210    /// #![feature(cell_leak)]
1211    /// use std::cell::RefCell;
1212    ///
1213    /// let mut c = RefCell::new(0);
1214    /// std::mem::forget(c.borrow_mut());
1215    ///
1216    /// assert!(c.try_borrow().is_err());
1217    /// c.undo_leak();
1218    /// assert!(c.try_borrow().is_ok());
1219    /// ```
1220    #[unstable(feature = "cell_leak", issue = "69099")]
1221    #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1222    pub const fn undo_leak(&mut self) -> &mut T {
1223        *self.borrow.get_mut() = UNUSED;
1224        self.get_mut()
1225    }
1226
1227    /// Immutably borrows the wrapped value, returning an error if the value is
1228    /// currently mutably borrowed.
1229    ///
1230    /// # Safety
1231    ///
1232    /// Unlike `RefCell::borrow`, this method is unsafe because it does not
1233    /// return a `Ref`, thus leaving the borrow flag untouched. Mutably
1234    /// borrowing the `RefCell` while the reference returned by this method
1235    /// is alive is undefined behavior.
1236    ///
1237    /// # Examples
1238    ///
1239    /// ```
1240    /// use std::cell::RefCell;
1241    ///
1242    /// let c = RefCell::new(5);
1243    ///
1244    /// {
1245    ///     let m = c.borrow_mut();
1246    ///     assert!(unsafe { c.try_borrow_unguarded() }.is_err());
1247    /// }
1248    ///
1249    /// {
1250    ///     let m = c.borrow();
1251    ///     assert!(unsafe { c.try_borrow_unguarded() }.is_ok());
1252    /// }
1253    /// ```
1254    #[stable(feature = "borrow_state", since = "1.37.0")]
1255    #[inline]
1256    #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1257    pub const unsafe fn try_borrow_unguarded(&self) -> Result<&T, BorrowError> {
1258        if !is_writing(self.borrow.get()) {
1259            // SAFETY: We check that nobody is actively writing now, but it is
1260            // the caller's responsibility to ensure that nobody writes until
1261            // the returned reference is no longer in use.
1262            // Also, `self.value.get()` refers to the value owned by `self`
1263            // and is thus guaranteed to be valid for the lifetime of `self`.
1264            Ok(unsafe { &*self.value.get() })
1265        } else {
1266            Err(BorrowError {
1267                // If a borrow occurred, then we must already have an outstanding borrow,
1268                // so `borrowed_at` will be `Some`
1269                #[cfg(feature = "debug_refcell")]
1270                location: self.borrowed_at.get().unwrap(),
1271            })
1272        }
1273    }
1274}
1275
1276impl<T: Default> RefCell<T> {
1277    /// Takes the wrapped value, leaving `Default::default()` in its place.
1278    ///
1279    /// # Panics
1280    ///
1281    /// Panics if the value is currently borrowed.
1282    ///
1283    /// # Examples
1284    ///
1285    /// ```
1286    /// use std::cell::RefCell;
1287    ///
1288    /// let c = RefCell::new(5);
1289    /// let five = c.take();
1290    ///
1291    /// assert_eq!(five, 5);
1292    /// assert_eq!(c.into_inner(), 0);
1293    /// ```
1294    #[stable(feature = "refcell_take", since = "1.50.0")]
1295    pub fn take(&self) -> T {
1296        self.replace(Default::default())
1297    }
1298}
1299
1300#[stable(feature = "rust1", since = "1.0.0")]
1301unsafe impl<T: ?Sized> Send for RefCell<T> where T: Send {}
1302
1303#[stable(feature = "rust1", since = "1.0.0")]
1304impl<T: ?Sized> !Sync for RefCell<T> {}
1305
1306#[stable(feature = "rust1", since = "1.0.0")]
1307impl<T: Clone> Clone for RefCell<T> {
1308    /// # Panics
1309    ///
1310    /// Panics if the value is currently mutably borrowed.
1311    #[inline]
1312    #[track_caller]
1313    fn clone(&self) -> RefCell<T> {
1314        RefCell::new(self.borrow().clone())
1315    }
1316
1317    /// # Panics
1318    ///
1319    /// Panics if `source` is currently mutably borrowed.
1320    #[inline]
1321    #[track_caller]
1322    fn clone_from(&mut self, source: &Self) {
1323        self.get_mut().clone_from(&source.borrow())
1324    }
1325}
1326
1327#[stable(feature = "rust1", since = "1.0.0")]
1328#[rustc_const_unstable(feature = "const_default", issue = "143894")]
1329impl<T: [const] Default> const Default for RefCell<T> {
1330    /// Creates a `RefCell<T>`, with the `Default` value for T.
1331    #[inline]
1332    fn default() -> RefCell<T> {
1333        RefCell::new(Default::default())
1334    }
1335}
1336
1337#[stable(feature = "rust1", since = "1.0.0")]
1338impl<T: ?Sized + PartialEq> PartialEq for RefCell<T> {
1339    /// # Panics
1340    ///
1341    /// Panics if the value in either `RefCell` is currently mutably borrowed.
1342    #[inline]
1343    fn eq(&self, other: &RefCell<T>) -> bool {
1344        *self.borrow() == *other.borrow()
1345    }
1346}
1347
1348#[stable(feature = "cell_eq", since = "1.2.0")]
1349impl<T: ?Sized + Eq> Eq for RefCell<T> {}
1350
1351#[stable(feature = "cell_ord", since = "1.10.0")]
1352impl<T: ?Sized + PartialOrd> PartialOrd for RefCell<T> {
1353    /// # Panics
1354    ///
1355    /// Panics if the value in either `RefCell` is currently mutably borrowed.
1356    #[inline]
1357    fn partial_cmp(&self, other: &RefCell<T>) -> Option<Ordering> {
1358        self.borrow().partial_cmp(&*other.borrow())
1359    }
1360
1361    /// # Panics
1362    ///
1363    /// Panics if the value in either `RefCell` is currently mutably borrowed.
1364    #[inline]
1365    fn lt(&self, other: &RefCell<T>) -> bool {
1366        *self.borrow() < *other.borrow()
1367    }
1368
1369    /// # Panics
1370    ///
1371    /// Panics if the value in either `RefCell` is currently mutably borrowed.
1372    #[inline]
1373    fn le(&self, other: &RefCell<T>) -> bool {
1374        *self.borrow() <= *other.borrow()
1375    }
1376
1377    /// # Panics
1378    ///
1379    /// Panics if the value in either `RefCell` is currently mutably borrowed.
1380    #[inline]
1381    fn gt(&self, other: &RefCell<T>) -> bool {
1382        *self.borrow() > *other.borrow()
1383    }
1384
1385    /// # Panics
1386    ///
1387    /// Panics if the value in either `RefCell` is currently mutably borrowed.
1388    #[inline]
1389    fn ge(&self, other: &RefCell<T>) -> bool {
1390        *self.borrow() >= *other.borrow()
1391    }
1392}
1393
1394#[stable(feature = "cell_ord", since = "1.10.0")]
1395impl<T: ?Sized + Ord> Ord for RefCell<T> {
1396    /// # Panics
1397    ///
1398    /// Panics if the value in either `RefCell` is currently mutably borrowed.
1399    #[inline]
1400    fn cmp(&self, other: &RefCell<T>) -> Ordering {
1401        self.borrow().cmp(&*other.borrow())
1402    }
1403}
1404
1405#[stable(feature = "cell_from", since = "1.12.0")]
1406#[rustc_const_unstable(feature = "const_convert", issue = "143773")]
1407impl<T> const From<T> for RefCell<T> {
1408    /// Creates a new `RefCell<T>` containing the given value.
1409    fn from(t: T) -> RefCell<T> {
1410        RefCell::new(t)
1411    }
1412}
1413
1414#[unstable(feature = "coerce_unsized", issue = "18598")]
1415impl<T: CoerceUnsized<U>, U> CoerceUnsized<RefCell<U>> for RefCell<T> {}
1416
1417struct BorrowRef<'b> {
1418    borrow: &'b Cell<BorrowCounter>,
1419}
1420
1421impl<'b> BorrowRef<'b> {
1422    #[inline]
1423    const fn new(borrow: &'b Cell<BorrowCounter>) -> Option<BorrowRef<'b>> {
1424        let b = borrow.get().wrapping_add(1);
1425        if !is_reading(b) {
1426            // Incrementing borrow can result in a non-reading value (<= 0) in these cases:
1427            // 1. It was < 0, i.e. there are writing borrows, so we can't allow a read borrow
1428            //    due to Rust's reference aliasing rules
1429            // 2. It was isize::MAX (the max amount of reading borrows) and it overflowed
1430            //    into isize::MIN (the max amount of writing borrows) so we can't allow
1431            //    an additional read borrow because isize can't represent so many read borrows
1432            //    (this can only happen if you mem::forget more than a small constant amount of
1433            //    `Ref`s, which is not good practice)
1434            None
1435        } else {
1436            // Incrementing borrow can result in a reading value (> 0) in these cases:
1437            // 1. It was = 0, i.e. it wasn't borrowed, and we are taking the first read borrow
1438            // 2. It was > 0 and < isize::MAX, i.e. there were read borrows, and isize
1439            //    is large enough to represent having one more read borrow
1440            borrow.replace(b);
1441            Some(BorrowRef { borrow })
1442        }
1443    }
1444}
1445
1446#[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1447impl const Drop for BorrowRef<'_> {
1448    #[inline]
1449    fn drop(&mut self) {
1450        let borrow = self.borrow.get();
1451        debug_assert!(is_reading(borrow));
1452        self.borrow.replace(borrow - 1);
1453    }
1454}
1455
1456#[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1457impl const Clone for BorrowRef<'_> {
1458    #[inline]
1459    fn clone(&self) -> Self {
1460        // Since this Ref exists, we know the borrow flag
1461        // is a reading borrow.
1462        let borrow = self.borrow.get();
1463        debug_assert!(is_reading(borrow));
1464        // Prevent the borrow counter from overflowing into
1465        // a writing borrow.
1466        assert!(borrow != BorrowCounter::MAX);
1467        self.borrow.replace(borrow + 1);
1468        BorrowRef { borrow: self.borrow }
1469    }
1470}
1471
1472/// Wraps a borrowed reference to a value in a `RefCell` box.
1473/// A wrapper type for an immutably borrowed value from a `RefCell<T>`.
1474///
1475/// See the [module-level documentation](self) for more.
1476#[stable(feature = "rust1", since = "1.0.0")]
1477#[must_not_suspend = "holding a Ref across suspend points can cause BorrowErrors"]
1478#[rustc_diagnostic_item = "RefCellRef"]
1479pub struct Ref<'b, T: ?Sized + 'b> {
1480    // NB: we use a pointer instead of `&'b T` to avoid `noalias` violations, because a
1481    // `Ref` argument doesn't hold immutability for its whole scope, only until it drops.
1482    // `NonNull` is also covariant over `T`, just like we would have with `&T`.
1483    value: NonNull<T>,
1484    borrow: BorrowRef<'b>,
1485}
1486
1487#[stable(feature = "rust1", since = "1.0.0")]
1488#[rustc_const_unstable(feature = "const_convert", issue = "143773")]
1489impl<T: ?Sized> const Deref for Ref<'_, T> {
1490    type Target = T;
1491
1492    #[inline]
1493    fn deref(&self) -> &T {
1494        // SAFETY: the value is accessible as long as we hold our borrow.
1495        unsafe { self.value.as_ref() }
1496    }
1497}
1498
1499#[unstable(feature = "deref_pure_trait", issue = "87121")]
1500unsafe impl<T: ?Sized> DerefPure for Ref<'_, T> {}
1501
1502impl<'b, T: ?Sized> Ref<'b, T> {
1503    /// Copies a `Ref`.
1504    ///
1505    /// The `RefCell` is already immutably borrowed, so this cannot fail.
1506    ///
1507    /// This is an associated function that needs to be used as
1508    /// `Ref::clone(...)`. A `Clone` implementation or a method would interfere
1509    /// with the widespread use of `r.borrow().clone()` to clone the contents of
1510    /// a `RefCell`.
1511    #[stable(feature = "cell_extras", since = "1.15.0")]
1512    #[must_use]
1513    #[inline]
1514    #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1515    pub const fn clone(orig: &Ref<'b, T>) -> Ref<'b, T> {
1516        Ref { value: orig.value, borrow: orig.borrow.clone() }
1517    }
1518
1519    /// Makes a new `Ref` for a component of the borrowed data.
1520    ///
1521    /// The `RefCell` is already immutably borrowed, so this cannot fail.
1522    ///
1523    /// This is an associated function that needs to be used as `Ref::map(...)`.
1524    /// A method would interfere with methods of the same name on the contents
1525    /// of a `RefCell` used through `Deref`.
1526    ///
1527    /// # Examples
1528    ///
1529    /// ```
1530    /// use std::cell::{RefCell, Ref};
1531    ///
1532    /// let c = RefCell::new((5, 'b'));
1533    /// let b1: Ref<'_, (u32, char)> = c.borrow();
1534    /// let b2: Ref<'_, u32> = Ref::map(b1, |t| &t.0);
1535    /// assert_eq!(*b2, 5)
1536    /// ```
1537    #[stable(feature = "cell_map", since = "1.8.0")]
1538    #[inline]
1539    pub fn map<U: ?Sized, F>(orig: Ref<'b, T>, f: F) -> Ref<'b, U>
1540    where
1541        F: FnOnce(&T) -> &U,
1542    {
1543        Ref { value: NonNull::from(f(&*orig)), borrow: orig.borrow }
1544    }
1545
1546    /// Makes a new `Ref` for an optional component of the borrowed data. The
1547    /// original guard is returned as an `Err(..)` if the closure returns
1548    /// `None`.
1549    ///
1550    /// The `RefCell` is already immutably borrowed, so this cannot fail.
1551    ///
1552    /// This is an associated function that needs to be used as
1553    /// `Ref::filter_map(...)`. A method would interfere with methods of the same
1554    /// name on the contents of a `RefCell` used through `Deref`.
1555    ///
1556    /// # Examples
1557    ///
1558    /// ```
1559    /// use std::cell::{RefCell, Ref};
1560    ///
1561    /// let c = RefCell::new(vec![1, 2, 3]);
1562    /// let b1: Ref<'_, Vec<u32>> = c.borrow();
1563    /// let b2: Result<Ref<'_, u32>, _> = Ref::filter_map(b1, |v| v.get(1));
1564    /// assert_eq!(*b2.unwrap(), 2);
1565    /// ```
1566    #[stable(feature = "cell_filter_map", since = "1.63.0")]
1567    #[inline]
1568    pub fn filter_map<U: ?Sized, F>(orig: Ref<'b, T>, f: F) -> Result<Ref<'b, U>, Self>
1569    where
1570        F: FnOnce(&T) -> Option<&U>,
1571    {
1572        match f(&*orig) {
1573            Some(value) => Ok(Ref { value: NonNull::from(value), borrow: orig.borrow }),
1574            None => Err(orig),
1575        }
1576    }
1577
1578    /// Tries to makes a new `Ref` for a component of the borrowed data.
1579    /// On failure, the original guard is returned alongside with the error
1580    /// returned by the closure.
1581    ///
1582    /// The `RefCell` is already immutably borrowed, so this cannot fail.
1583    ///
1584    /// This is an associated function that needs to be used as
1585    /// `Ref::try_map(...)`. A method would interfere with methods of the same
1586    /// name on the contents of a `RefCell` used through `Deref`.
1587    ///
1588    /// # Examples
1589    ///
1590    /// ```
1591    /// #![feature(refcell_try_map)]
1592    /// use std::cell::{RefCell, Ref};
1593    /// use std::str::{from_utf8, Utf8Error};
1594    ///
1595    /// let c = RefCell::new(vec![0xF0, 0x9F, 0xA6 ,0x80]);
1596    /// let b1: Ref<'_, Vec<u8>> = c.borrow();
1597    /// let b2: Result<Ref<'_, str>, _> = Ref::try_map(b1, |v| from_utf8(v));
1598    /// assert_eq!(&*b2.unwrap(), "🦀");
1599    ///
1600    /// let c = RefCell::new(vec![0xF0, 0x9F, 0xA6]);
1601    /// let b1: Ref<'_, Vec<u8>> = c.borrow();
1602    /// let b2: Result<_, (Ref<'_, Vec<u8>>, Utf8Error)> = Ref::try_map(b1, |v| from_utf8(v));
1603    /// let (b3, e) = b2.unwrap_err();
1604    /// assert_eq!(*b3, vec![0xF0, 0x9F, 0xA6]);
1605    /// assert_eq!(e.valid_up_to(), 0);
1606    /// ```
1607    #[unstable(feature = "refcell_try_map", issue = "143801")]
1608    #[inline]
1609    pub fn try_map<U: ?Sized, E>(
1610        orig: Ref<'b, T>,
1611        f: impl FnOnce(&T) -> Result<&U, E>,
1612    ) -> Result<Ref<'b, U>, (Self, E)> {
1613        match f(&*orig) {
1614            Ok(value) => Ok(Ref { value: NonNull::from(value), borrow: orig.borrow }),
1615            Err(e) => Err((orig, e)),
1616        }
1617    }
1618
1619    /// Splits a `Ref` into multiple `Ref`s for different components of the
1620    /// borrowed data.
1621    ///
1622    /// The `RefCell` is already immutably borrowed, so this cannot fail.
1623    ///
1624    /// This is an associated function that needs to be used as
1625    /// `Ref::map_split(...)`. A method would interfere with methods of the same
1626    /// name on the contents of a `RefCell` used through `Deref`.
1627    ///
1628    /// # Examples
1629    ///
1630    /// ```
1631    /// use std::cell::{Ref, RefCell};
1632    ///
1633    /// let cell = RefCell::new([1, 2, 3, 4]);
1634    /// let borrow = cell.borrow();
1635    /// let (begin, end) = Ref::map_split(borrow, |slice| slice.split_at(2));
1636    /// assert_eq!(*begin, [1, 2]);
1637    /// assert_eq!(*end, [3, 4]);
1638    /// ```
1639    #[stable(feature = "refcell_map_split", since = "1.35.0")]
1640    #[inline]
1641    pub fn map_split<U: ?Sized, V: ?Sized, F>(orig: Ref<'b, T>, f: F) -> (Ref<'b, U>, Ref<'b, V>)
1642    where
1643        F: FnOnce(&T) -> (&U, &V),
1644    {
1645        let (a, b) = f(&*orig);
1646        let borrow = orig.borrow.clone();
1647        (
1648            Ref { value: NonNull::from(a), borrow },
1649            Ref { value: NonNull::from(b), borrow: orig.borrow },
1650        )
1651    }
1652
1653    /// Converts into a reference to the underlying data.
1654    ///
1655    /// The underlying `RefCell` can never be mutably borrowed from again and will always appear
1656    /// already immutably borrowed. It is not a good idea to leak more than a constant number of
1657    /// references. The `RefCell` can be immutably borrowed again if only a smaller number of leaks
1658    /// have occurred in total.
1659    ///
1660    /// This is an associated function that needs to be used as
1661    /// `Ref::leak(...)`. A method would interfere with methods of the
1662    /// same name on the contents of a `RefCell` used through `Deref`.
1663    ///
1664    /// # Examples
1665    ///
1666    /// ```
1667    /// #![feature(cell_leak)]
1668    /// use std::cell::{RefCell, Ref};
1669    /// let cell = RefCell::new(0);
1670    ///
1671    /// let value = Ref::leak(cell.borrow());
1672    /// assert_eq!(*value, 0);
1673    ///
1674    /// assert!(cell.try_borrow().is_ok());
1675    /// assert!(cell.try_borrow_mut().is_err());
1676    /// ```
1677    #[unstable(feature = "cell_leak", issue = "69099")]
1678    #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1679    pub const fn leak(orig: Ref<'b, T>) -> &'b T {
1680        // By forgetting this Ref we ensure that the borrow counter in the RefCell can't go back to
1681        // UNUSED within the lifetime `'b`. Resetting the reference tracking state would require a
1682        // unique reference to the borrowed RefCell. No further mutable references can be created
1683        // from the original cell.
1684        mem::forget(orig.borrow);
1685        // SAFETY: after forgetting, we can form a reference for the rest of lifetime `'b`.
1686        unsafe { orig.value.as_ref() }
1687    }
1688}
1689
1690#[unstable(feature = "coerce_unsized", issue = "18598")]
1691impl<'b, T: ?Sized + Unsize<U>, U: ?Sized> CoerceUnsized<Ref<'b, U>> for Ref<'b, T> {}
1692
1693#[stable(feature = "std_guard_impls", since = "1.20.0")]
1694impl<T: ?Sized + fmt::Display> fmt::Display for Ref<'_, T> {
1695    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1696        (**self).fmt(f)
1697    }
1698}
1699
1700impl<'b, T: ?Sized> RefMut<'b, T> {
1701    /// Makes a new `RefMut` for a component of the borrowed data, e.g., an enum
1702    /// variant.
1703    ///
1704    /// The `RefCell` is already mutably borrowed, so this cannot fail.
1705    ///
1706    /// This is an associated function that needs to be used as
1707    /// `RefMut::map(...)`. A method would interfere with methods of the same
1708    /// name on the contents of a `RefCell` used through `Deref`.
1709    ///
1710    /// # Examples
1711    ///
1712    /// ```
1713    /// use std::cell::{RefCell, RefMut};
1714    ///
1715    /// let c = RefCell::new((5, 'b'));
1716    /// {
1717    ///     let b1: RefMut<'_, (u32, char)> = c.borrow_mut();
1718    ///     let mut b2: RefMut<'_, u32> = RefMut::map(b1, |t| &mut t.0);
1719    ///     assert_eq!(*b2, 5);
1720    ///     *b2 = 42;
1721    /// }
1722    /// assert_eq!(*c.borrow(), (42, 'b'));
1723    /// ```
1724    #[stable(feature = "cell_map", since = "1.8.0")]
1725    #[inline]
1726    pub fn map<U: ?Sized, F>(mut orig: RefMut<'b, T>, f: F) -> RefMut<'b, U>
1727    where
1728        F: FnOnce(&mut T) -> &mut U,
1729    {
1730        let value = NonNull::from(f(&mut *orig));
1731        RefMut { value, borrow: orig.borrow, marker: PhantomData }
1732    }
1733
1734    /// Makes a new `RefMut` for an optional component of the borrowed data. The
1735    /// original guard is returned as an `Err(..)` if the closure returns
1736    /// `None`.
1737    ///
1738    /// The `RefCell` is already mutably borrowed, so this cannot fail.
1739    ///
1740    /// This is an associated function that needs to be used as
1741    /// `RefMut::filter_map(...)`. A method would interfere with methods of the
1742    /// same name on the contents of a `RefCell` used through `Deref`.
1743    ///
1744    /// # Examples
1745    ///
1746    /// ```
1747    /// use std::cell::{RefCell, RefMut};
1748    ///
1749    /// let c = RefCell::new(vec![1, 2, 3]);
1750    ///
1751    /// {
1752    ///     let b1: RefMut<'_, Vec<u32>> = c.borrow_mut();
1753    ///     let mut b2: Result<RefMut<'_, u32>, _> = RefMut::filter_map(b1, |v| v.get_mut(1));
1754    ///
1755    ///     if let Ok(mut b2) = b2 {
1756    ///         *b2 += 2;
1757    ///     }
1758    /// }
1759    ///
1760    /// assert_eq!(*c.borrow(), vec![1, 4, 3]);
1761    /// ```
1762    #[stable(feature = "cell_filter_map", since = "1.63.0")]
1763    #[inline]
1764    pub fn filter_map<U: ?Sized, F>(mut orig: RefMut<'b, T>, f: F) -> Result<RefMut<'b, U>, Self>
1765    where
1766        F: FnOnce(&mut T) -> Option<&mut U>,
1767    {
1768        // SAFETY: function holds onto an exclusive reference for the duration
1769        // of its call through `orig`, and the pointer is only de-referenced
1770        // inside of the function call never allowing the exclusive reference to
1771        // escape.
1772        match f(&mut *orig) {
1773            Some(value) => {
1774                Ok(RefMut { value: NonNull::from(value), borrow: orig.borrow, marker: PhantomData })
1775            }
1776            None => Err(orig),
1777        }
1778    }
1779
1780    /// Tries to makes a new `RefMut` for a component of the borrowed data.
1781    /// On failure, the original guard is returned alongside with the error
1782    /// returned by the closure.
1783    ///
1784    /// The `RefCell` is already mutably borrowed, so this cannot fail.
1785    ///
1786    /// This is an associated function that needs to be used as
1787    /// `RefMut::try_map(...)`. A method would interfere with methods of the same
1788    /// name on the contents of a `RefCell` used through `Deref`.
1789    ///
1790    /// # Examples
1791    ///
1792    /// ```
1793    /// #![feature(refcell_try_map)]
1794    /// use std::cell::{RefCell, RefMut};
1795    /// use std::str::{from_utf8_mut, Utf8Error};
1796    ///
1797    /// let c = RefCell::new(vec![0x68, 0x65, 0x6C, 0x6C, 0x6F]);
1798    /// {
1799    ///     let b1: RefMut<'_, Vec<u8>> = c.borrow_mut();
1800    ///     let b2: Result<RefMut<'_, str>, _> = RefMut::try_map(b1, |v| from_utf8_mut(v));
1801    ///     let mut b2 = b2.unwrap();
1802    ///     assert_eq!(&*b2, "hello");
1803    ///     b2.make_ascii_uppercase();
1804    /// }
1805    /// assert_eq!(*c.borrow(), "HELLO".as_bytes());
1806    ///
1807    /// let c = RefCell::new(vec![0xFF]);
1808    /// let b1: RefMut<'_, Vec<u8>> = c.borrow_mut();
1809    /// let b2: Result<_, (RefMut<'_, Vec<u8>>, Utf8Error)> = RefMut::try_map(b1, |v| from_utf8_mut(v));
1810    /// let (b3, e) = b2.unwrap_err();
1811    /// assert_eq!(*b3, vec![0xFF]);
1812    /// assert_eq!(e.valid_up_to(), 0);
1813    /// ```
1814    #[unstable(feature = "refcell_try_map", issue = "143801")]
1815    #[inline]
1816    pub fn try_map<U: ?Sized, E>(
1817        mut orig: RefMut<'b, T>,
1818        f: impl FnOnce(&mut T) -> Result<&mut U, E>,
1819    ) -> Result<RefMut<'b, U>, (Self, E)> {
1820        // SAFETY: function holds onto an exclusive reference for the duration
1821        // of its call through `orig`, and the pointer is only de-referenced
1822        // inside of the function call never allowing the exclusive reference to
1823        // escape.
1824        match f(&mut *orig) {
1825            Ok(value) => {
1826                Ok(RefMut { value: NonNull::from(value), borrow: orig.borrow, marker: PhantomData })
1827            }
1828            Err(e) => Err((orig, e)),
1829        }
1830    }
1831
1832    /// Splits a `RefMut` into multiple `RefMut`s for different components of the
1833    /// borrowed data.
1834    ///
1835    /// The underlying `RefCell` will remain mutably borrowed until both
1836    /// returned `RefMut`s go out of scope.
1837    ///
1838    /// The `RefCell` is already mutably borrowed, so this cannot fail.
1839    ///
1840    /// This is an associated function that needs to be used as
1841    /// `RefMut::map_split(...)`. A method would interfere with methods of the
1842    /// same name on the contents of a `RefCell` used through `Deref`.
1843    ///
1844    /// # Examples
1845    ///
1846    /// ```
1847    /// use std::cell::{RefCell, RefMut};
1848    ///
1849    /// let cell = RefCell::new([1, 2, 3, 4]);
1850    /// let borrow = cell.borrow_mut();
1851    /// let (mut begin, mut end) = RefMut::map_split(borrow, |slice| slice.split_at_mut(2));
1852    /// assert_eq!(*begin, [1, 2]);
1853    /// assert_eq!(*end, [3, 4]);
1854    /// begin.copy_from_slice(&[4, 3]);
1855    /// end.copy_from_slice(&[2, 1]);
1856    /// ```
1857    #[stable(feature = "refcell_map_split", since = "1.35.0")]
1858    #[inline]
1859    pub fn map_split<U: ?Sized, V: ?Sized, F>(
1860        mut orig: RefMut<'b, T>,
1861        f: F,
1862    ) -> (RefMut<'b, U>, RefMut<'b, V>)
1863    where
1864        F: FnOnce(&mut T) -> (&mut U, &mut V),
1865    {
1866        let borrow = orig.borrow.clone();
1867        let (a, b) = f(&mut *orig);
1868        (
1869            RefMut { value: NonNull::from(a), borrow, marker: PhantomData },
1870            RefMut { value: NonNull::from(b), borrow: orig.borrow, marker: PhantomData },
1871        )
1872    }
1873
1874    /// Converts into a mutable reference to the underlying data.
1875    ///
1876    /// The underlying `RefCell` can not be borrowed from again and will always appear already
1877    /// mutably borrowed, making the returned reference the only to the interior.
1878    ///
1879    /// This is an associated function that needs to be used as
1880    /// `RefMut::leak(...)`. A method would interfere with methods of the
1881    /// same name on the contents of a `RefCell` used through `Deref`.
1882    ///
1883    /// # Examples
1884    ///
1885    /// ```
1886    /// #![feature(cell_leak)]
1887    /// use std::cell::{RefCell, RefMut};
1888    /// let cell = RefCell::new(0);
1889    ///
1890    /// let value = RefMut::leak(cell.borrow_mut());
1891    /// assert_eq!(*value, 0);
1892    /// *value = 1;
1893    ///
1894    /// assert!(cell.try_borrow_mut().is_err());
1895    /// ```
1896    #[unstable(feature = "cell_leak", issue = "69099")]
1897    #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1898    pub const fn leak(mut orig: RefMut<'b, T>) -> &'b mut T {
1899        // By forgetting this BorrowRefMut we ensure that the borrow counter in the RefCell can't
1900        // go back to UNUSED within the lifetime `'b`. Resetting the reference tracking state would
1901        // require a unique reference to the borrowed RefCell. No further references can be created
1902        // from the original cell within that lifetime, making the current borrow the only
1903        // reference for the remaining lifetime.
1904        mem::forget(orig.borrow);
1905        // SAFETY: after forgetting, we can form a reference for the rest of lifetime `'b`.
1906        unsafe { orig.value.as_mut() }
1907    }
1908}
1909
1910struct BorrowRefMut<'b> {
1911    borrow: &'b Cell<BorrowCounter>,
1912}
1913
1914#[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1915impl const Drop for BorrowRefMut<'_> {
1916    #[inline]
1917    fn drop(&mut self) {
1918        let borrow = self.borrow.get();
1919        debug_assert!(is_writing(borrow));
1920        self.borrow.replace(borrow + 1);
1921    }
1922}
1923
1924impl<'b> BorrowRefMut<'b> {
1925    #[inline]
1926    const fn new(borrow: &'b Cell<BorrowCounter>) -> Option<BorrowRefMut<'b>> {
1927        // NOTE: Unlike BorrowRefMut::clone, new is called to create the initial
1928        // mutable reference, and so there must currently be no existing
1929        // references. Thus, while clone increments the mutable refcount, here
1930        // we explicitly only allow going from UNUSED to UNUSED - 1.
1931        match borrow.get() {
1932            UNUSED => {
1933                borrow.replace(UNUSED - 1);
1934                Some(BorrowRefMut { borrow })
1935            }
1936            _ => None,
1937        }
1938    }
1939
1940    // Clones a `BorrowRefMut`.
1941    //
1942    // This is only valid if each `BorrowRefMut` is used to track a mutable
1943    // reference to a distinct, nonoverlapping range of the original object.
1944    // This isn't in a Clone impl so that code doesn't call this implicitly.
1945    #[inline]
1946    fn clone(&self) -> BorrowRefMut<'b> {
1947        let borrow = self.borrow.get();
1948        debug_assert!(is_writing(borrow));
1949        // Prevent the borrow counter from underflowing.
1950        assert!(borrow != BorrowCounter::MIN);
1951        self.borrow.set(borrow - 1);
1952        BorrowRefMut { borrow: self.borrow }
1953    }
1954}
1955
1956/// A wrapper type for a mutably borrowed value from a `RefCell<T>`.
1957///
1958/// See the [module-level documentation](self) for more.
1959#[stable(feature = "rust1", since = "1.0.0")]
1960#[must_not_suspend = "holding a RefMut across suspend points can cause BorrowErrors"]
1961#[rustc_diagnostic_item = "RefCellRefMut"]
1962pub struct RefMut<'b, T: ?Sized + 'b> {
1963    // NB: we use a pointer instead of `&'b mut T` to avoid `noalias` violations, because a
1964    // `RefMut` argument doesn't hold exclusivity for its whole scope, only until it drops.
1965    value: NonNull<T>,
1966    borrow: BorrowRefMut<'b>,
1967    // `NonNull` is covariant over `T`, so we need to reintroduce invariance.
1968    marker: PhantomData<&'b mut T>,
1969}
1970
1971#[stable(feature = "rust1", since = "1.0.0")]
1972#[rustc_const_unstable(feature = "const_convert", issue = "143773")]
1973impl<T: ?Sized> const Deref for RefMut<'_, T> {
1974    type Target = T;
1975
1976    #[inline]
1977    fn deref(&self) -> &T {
1978        // SAFETY: the value is accessible as long as we hold our borrow.
1979        unsafe { self.value.as_ref() }
1980    }
1981}
1982
1983#[stable(feature = "rust1", since = "1.0.0")]
1984#[rustc_const_unstable(feature = "const_convert", issue = "143773")]
1985impl<T: ?Sized> const DerefMut for RefMut<'_, T> {
1986    #[inline]
1987    fn deref_mut(&mut self) -> &mut T {
1988        // SAFETY: the value is accessible as long as we hold our borrow.
1989        unsafe { self.value.as_mut() }
1990    }
1991}
1992
1993#[unstable(feature = "deref_pure_trait", issue = "87121")]
1994unsafe impl<T: ?Sized> DerefPure for RefMut<'_, T> {}
1995
1996#[unstable(feature = "coerce_unsized", issue = "18598")]
1997impl<'b, T: ?Sized + Unsize<U>, U: ?Sized> CoerceUnsized<RefMut<'b, U>> for RefMut<'b, T> {}
1998
1999#[stable(feature = "std_guard_impls", since = "1.20.0")]
2000impl<T: ?Sized + fmt::Display> fmt::Display for RefMut<'_, T> {
2001    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
2002        (**self).fmt(f)
2003    }
2004}
2005
2006/// The core primitive for interior mutability in Rust.
2007///
2008/// If you have a reference `&T`, then normally in Rust the compiler performs optimizations based on
2009/// the knowledge that `&T` points to immutable data. Mutating that data, for example through an
2010/// alias or by transmuting a `&T` into a `&mut T`, is considered undefined behavior.
2011/// `UnsafeCell<T>` opts-out of the immutability guarantee for `&T`: a shared reference
2012/// `&UnsafeCell<T>` may point to data that is being mutated. This is called "interior mutability".
2013///
2014/// All other types that allow internal mutability, such as [`Cell<T>`] and [`RefCell<T>`], internally
2015/// use `UnsafeCell` to wrap their data.
2016///
2017/// Note that only the immutability guarantee for shared references is affected by `UnsafeCell`. The
2018/// uniqueness guarantee for mutable references is unaffected. There is *no* legal way to obtain
2019/// aliasing `&mut`, not even with `UnsafeCell<T>`.
2020///
2021/// `UnsafeCell` does nothing to avoid data races; they are still undefined behavior. If multiple
2022/// threads have access to the same `UnsafeCell`, they must follow the usual rules of the
2023/// [concurrent memory model]: conflicting non-synchronized accesses must be done via the APIs in
2024/// [`core::sync::atomic`].
2025///
2026/// The `UnsafeCell` API itself is technically very simple: [`.get()`] gives you a raw pointer
2027/// `*mut T` to its contents. It is up to _you_ as the abstraction designer to use that raw pointer
2028/// correctly.
2029///
2030/// [`.get()`]: `UnsafeCell::get`
2031/// [concurrent memory model]: ../sync/atomic/index.html#memory-model-for-atomic-accesses
2032///
2033/// # Aliasing rules
2034///
2035/// The precise Rust aliasing rules are somewhat in flux, but the main points are not contentious:
2036///
2037/// - If you create a safe reference with lifetime `'a` (either a `&T` or `&mut T` reference), then
2038///   you must not access the data in any way that contradicts that reference for the remainder of
2039///   `'a`. For example, this means that if you take the `*mut T` from an `UnsafeCell<T>` and cast it
2040///   to an `&T`, then the data in `T` must remain immutable (modulo any `UnsafeCell` data found
2041///   within `T`, of course) until that reference's lifetime expires. Similarly, if you create a
2042///   `&mut T` reference that is released to safe code, then you must not access the data within the
2043///   `UnsafeCell` until that reference expires.
2044///
2045/// - For both `&T` without `UnsafeCell<_>` and `&mut T`, you must also not deallocate the data
2046///   until the reference expires. As a special exception, given an `&T`, any part of it that is
2047///   inside an `UnsafeCell<_>` may be deallocated during the lifetime of the reference, after the
2048///   last time the reference is used (dereferenced or reborrowed). Since you cannot deallocate a part
2049///   of what a reference points to, this means the memory an `&T` points to can be deallocated only if
2050///   *every part of it* (including padding) is inside an `UnsafeCell`.
2051///
2052/// However, whenever a `&UnsafeCell<T>` is constructed or dereferenced, it must still point to
2053/// live memory and the compiler is allowed to insert spurious reads if it can prove that this
2054/// memory has not yet been deallocated.
2055///
2056/// To assist with proper design, the following scenarios are explicitly declared legal
2057/// for single-threaded code:
2058///
2059/// 1. A `&T` reference can be released to safe code and there it can co-exist with other `&T`
2060///    references, but not with a `&mut T`
2061///
2062/// 2. A `&mut T` reference may be released to safe code provided neither other `&mut T` nor `&T`
2063///    co-exist with it. A `&mut T` must always be unique.
2064///
2065/// Note that whilst mutating the contents of an `&UnsafeCell<T>` (even while other
2066/// `&UnsafeCell<T>` references alias the cell) is
2067/// ok (provided you enforce the above invariants some other way), it is still undefined behavior
2068/// to have multiple `&mut UnsafeCell<T>` aliases. That is, `UnsafeCell` is a wrapper
2069/// designed to have a special interaction with _shared_ accesses (_i.e._, through an
2070/// `&UnsafeCell<_>` reference); there is no magic whatsoever when dealing with _exclusive_
2071/// accesses (_e.g._, through a `&mut UnsafeCell<_>`): neither the cell nor the wrapped value
2072/// may be aliased for the duration of that `&mut` borrow.
2073/// This is showcased by the [`.get_mut()`] accessor, which is a _safe_ getter that yields
2074/// a `&mut T`.
2075///
2076/// [`.get_mut()`]: `UnsafeCell::get_mut`
2077///
2078/// # Memory layout
2079///
2080/// `UnsafeCell<T>` has the same in-memory representation as its inner type `T`. A consequence
2081/// of this guarantee is that it is possible to convert between `T` and `UnsafeCell<T>`.
2082/// Special care has to be taken when converting a nested `T` inside of an `Outer<T>` type
2083/// to an `Outer<UnsafeCell<T>>` type: this is not sound when the `Outer<T>` type enables [niche]
2084/// optimizations. For example, the type `Option<NonNull<u8>>` is typically 8 bytes large on
2085/// 64-bit platforms, but the type `Option<UnsafeCell<NonNull<u8>>>` takes up 16 bytes of space.
2086/// Therefore this is not a valid conversion, despite `NonNull<u8>` and `UnsafeCell<NonNull<u8>>>`
2087/// having the same memory layout. This is because `UnsafeCell` disables niche optimizations in
2088/// order to avoid its interior mutability property from spreading from `T` into the `Outer` type,
2089/// thus this can cause distortions in the type size in these cases.
2090///
2091/// Note that the only valid way to obtain a `*mut T` pointer to the contents of a
2092/// _shared_ `UnsafeCell<T>` is through [`.get()`]  or [`.raw_get()`]. A `&mut T` reference
2093/// can be obtained by either dereferencing this pointer or by calling [`.get_mut()`]
2094/// on an _exclusive_ `UnsafeCell<T>`. Even though `T` and `UnsafeCell<T>` have the
2095/// same memory layout, the following is not allowed and undefined behavior:
2096///
2097/// ```rust,compile_fail
2098/// # use std::cell::UnsafeCell;
2099/// unsafe fn not_allowed<T>(ptr: &UnsafeCell<T>) -> &mut T {
2100///   let t = ptr as *const UnsafeCell<T> as *mut T;
2101///   // This is undefined behavior, because the `*mut T` pointer
2102///   // was not obtained through `.get()` nor `.raw_get()`:
2103///   unsafe { &mut *t }
2104/// }
2105/// ```
2106///
2107/// Instead, do this:
2108///
2109/// ```rust
2110/// # use std::cell::UnsafeCell;
2111/// // Safety: the caller must ensure that there are no references that
2112/// // point to the *contents* of the `UnsafeCell`.
2113/// unsafe fn get_mut<T>(ptr: &UnsafeCell<T>) -> &mut T {
2114///   unsafe { &mut *ptr.get() }
2115/// }
2116/// ```
2117///
2118/// Converting in the other direction from a `&mut T`
2119/// to an `&UnsafeCell<T>` is allowed:
2120///
2121/// ```rust
2122/// # use std::cell::UnsafeCell;
2123/// fn get_shared<T>(ptr: &mut T) -> &UnsafeCell<T> {
2124///   let t = ptr as *mut T as *const UnsafeCell<T>;
2125///   // SAFETY: `T` and `UnsafeCell<T>` have the same memory layout
2126///   unsafe { &*t }
2127/// }
2128/// ```
2129///
2130/// [niche]: https://rust-lang.github.io/unsafe-code-guidelines/glossary.html#niche
2131/// [`.raw_get()`]: `UnsafeCell::raw_get`
2132///
2133/// # Examples
2134///
2135/// Here is an example showcasing how to soundly mutate the contents of an `UnsafeCell<_>` despite
2136/// there being multiple references aliasing the cell:
2137///
2138/// ```
2139/// use std::cell::UnsafeCell;
2140///
2141/// let x: UnsafeCell<i32> = 42.into();
2142/// // Get multiple / concurrent / shared references to the same `x`.
2143/// let (p1, p2): (&UnsafeCell<i32>, &UnsafeCell<i32>) = (&x, &x);
2144///
2145/// unsafe {
2146///     // SAFETY: within this scope there are no other references to `x`'s contents,
2147///     // so ours is effectively unique.
2148///     let p1_exclusive: &mut i32 = &mut *p1.get(); // -- borrow --+
2149///     *p1_exclusive += 27; //                                     |
2150/// } // <---------- cannot go beyond this point -------------------+
2151///
2152/// unsafe {
2153///     // SAFETY: within this scope nobody expects to have exclusive access to `x`'s contents,
2154///     // so we can have multiple shared accesses concurrently.
2155///     let p2_shared: &i32 = &*p2.get();
2156///     assert_eq!(*p2_shared, 42 + 27);
2157///     let p1_shared: &i32 = &*p1.get();
2158///     assert_eq!(*p1_shared, *p2_shared);
2159/// }
2160/// ```
2161///
2162/// The following example showcases the fact that exclusive access to an `UnsafeCell<T>`
2163/// implies exclusive access to its `T`:
2164///
2165/// ```rust
2166/// #![forbid(unsafe_code)]
2167/// // with exclusive accesses, `UnsafeCell` is a transparent no-op wrapper, so no need for
2168/// // `unsafe` here.
2169/// use std::cell::UnsafeCell;
2170///
2171/// let mut x: UnsafeCell<i32> = 42.into();
2172///
2173/// // Get a compile-time-checked unique reference to `x`.
2174/// let p_unique: &mut UnsafeCell<i32> = &mut x;
2175/// // With an exclusive reference, we can mutate the contents for free.
2176/// *p_unique.get_mut() = 0;
2177/// // Or, equivalently:
2178/// x = UnsafeCell::new(0);
2179///
2180/// // When we own the value, we can extract the contents for free.
2181/// let contents: i32 = x.into_inner();
2182/// assert_eq!(contents, 0);
2183/// ```
2184#[lang = "unsafe_cell"]
2185#[stable(feature = "rust1", since = "1.0.0")]
2186#[repr(transparent)]
2187#[rustc_pub_transparent]
2188pub struct UnsafeCell<T: ?Sized> {
2189    value: T,
2190}
2191
2192#[stable(feature = "rust1", since = "1.0.0")]
2193impl<T: ?Sized> !Sync for UnsafeCell<T> {}
2194
2195impl<T> UnsafeCell<T> {
2196    /// Constructs a new instance of `UnsafeCell` which will wrap the specified
2197    /// value.
2198    ///
2199    /// All access to the inner value through `&UnsafeCell<T>` requires `unsafe` code.
2200    ///
2201    /// # Examples
2202    ///
2203    /// ```
2204    /// use std::cell::UnsafeCell;
2205    ///
2206    /// let uc = UnsafeCell::new(5);
2207    /// ```
2208    #[stable(feature = "rust1", since = "1.0.0")]
2209    #[rustc_const_stable(feature = "const_unsafe_cell_new", since = "1.32.0")]
2210    #[inline(always)]
2211    pub const fn new(value: T) -> UnsafeCell<T> {
2212        UnsafeCell { value }
2213    }
2214
2215    /// Unwraps the value, consuming the cell.
2216    ///
2217    /// # Examples
2218    ///
2219    /// ```
2220    /// use std::cell::UnsafeCell;
2221    ///
2222    /// let uc = UnsafeCell::new(5);
2223    ///
2224    /// let five = uc.into_inner();
2225    /// ```
2226    #[inline(always)]
2227    #[stable(feature = "rust1", since = "1.0.0")]
2228    #[rustc_const_stable(feature = "const_cell_into_inner", since = "1.83.0")]
2229    #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
2230    pub const fn into_inner(self) -> T {
2231        self.value
2232    }
2233
2234    /// Replace the value in this `UnsafeCell` and return the old value.
2235    ///
2236    /// # Safety
2237    ///
2238    /// The caller must take care to avoid aliasing and data races.
2239    ///
2240    /// - It is Undefined Behavior to allow calls to race with
2241    ///   any other access to the wrapped value.
2242    /// - It is Undefined Behavior to call this while any other
2243    ///   reference(s) to the wrapped value are alive.
2244    ///
2245    /// # Examples
2246    ///
2247    /// ```
2248    /// #![feature(unsafe_cell_access)]
2249    /// use std::cell::UnsafeCell;
2250    ///
2251    /// let uc = UnsafeCell::new(5);
2252    ///
2253    /// let old = unsafe { uc.replace(10) };
2254    /// assert_eq!(old, 5);
2255    /// ```
2256    #[inline]
2257    #[unstable(feature = "unsafe_cell_access", issue = "136327")]
2258    pub const unsafe fn replace(&self, value: T) -> T {
2259        // SAFETY: pointer comes from `&self` so naturally satisfies invariants.
2260        unsafe { ptr::replace(self.get(), value) }
2261    }
2262}
2263
2264impl<T: ?Sized> UnsafeCell<T> {
2265    /// Converts from `&mut T` to `&mut UnsafeCell<T>`.
2266    ///
2267    /// # Examples
2268    ///
2269    /// ```
2270    /// use std::cell::UnsafeCell;
2271    ///
2272    /// let mut val = 42;
2273    /// let uc = UnsafeCell::from_mut(&mut val);
2274    ///
2275    /// *uc.get_mut() -= 1;
2276    /// assert_eq!(*uc.get_mut(), 41);
2277    /// ```
2278    #[inline(always)]
2279    #[stable(feature = "unsafe_cell_from_mut", since = "1.84.0")]
2280    #[rustc_const_stable(feature = "unsafe_cell_from_mut", since = "1.84.0")]
2281    pub const fn from_mut(value: &mut T) -> &mut UnsafeCell<T> {
2282        // SAFETY: `UnsafeCell<T>` has the same memory layout as `T` due to #[repr(transparent)].
2283        unsafe { &mut *(value as *mut T as *mut UnsafeCell<T>) }
2284    }
2285
2286    /// Gets a mutable pointer to the wrapped value.
2287    ///
2288    /// This can be cast to a pointer of any kind. When creating references, you must uphold the
2289    /// aliasing rules; see [the type-level docs][UnsafeCell#aliasing-rules] for more discussion and
2290    /// caveats.
2291    ///
2292    /// # Examples
2293    ///
2294    /// ```
2295    /// use std::cell::UnsafeCell;
2296    ///
2297    /// let uc = UnsafeCell::new(5);
2298    ///
2299    /// let five = uc.get();
2300    /// ```
2301    #[inline(always)]
2302    #[stable(feature = "rust1", since = "1.0.0")]
2303    #[rustc_const_stable(feature = "const_unsafecell_get", since = "1.32.0")]
2304    #[rustc_as_ptr]
2305    #[rustc_never_returns_null_ptr]
2306    pub const fn get(&self) -> *mut T {
2307        // We can just cast the pointer from `UnsafeCell<T>` to `T` because of
2308        // #[repr(transparent)]. This exploits std's special status, there is
2309        // no guarantee for user code that this will work in future versions of the compiler!
2310        self as *const UnsafeCell<T> as *const T as *mut T
2311    }
2312
2313    /// Returns a mutable reference to the underlying data.
2314    ///
2315    /// This call borrows the `UnsafeCell` mutably (at compile-time) which
2316    /// guarantees that we possess the only reference.
2317    ///
2318    /// # Examples
2319    ///
2320    /// ```
2321    /// use std::cell::UnsafeCell;
2322    ///
2323    /// let mut c = UnsafeCell::new(5);
2324    /// *c.get_mut() += 1;
2325    ///
2326    /// assert_eq!(*c.get_mut(), 6);
2327    /// ```
2328    #[inline(always)]
2329    #[stable(feature = "unsafe_cell_get_mut", since = "1.50.0")]
2330    #[rustc_const_stable(feature = "const_unsafecell_get_mut", since = "1.83.0")]
2331    pub const fn get_mut(&mut self) -> &mut T {
2332        &mut self.value
2333    }
2334
2335    /// Gets a mutable pointer to the wrapped value.
2336    /// The difference from [`get`] is that this function accepts a raw pointer,
2337    /// which is useful to avoid the creation of temporary references.
2338    ///
2339    /// This can be cast to a pointer of any kind. When creating references, you must uphold the
2340    /// aliasing rules; see [the type-level docs][UnsafeCell#aliasing-rules] for more discussion and
2341    /// caveats.
2342    ///
2343    /// [`get`]: UnsafeCell::get()
2344    ///
2345    /// # Examples
2346    ///
2347    /// Gradual initialization of an `UnsafeCell` requires `raw_get`, as
2348    /// calling `get` would require creating a reference to uninitialized data:
2349    ///
2350    /// ```
2351    /// use std::cell::UnsafeCell;
2352    /// use std::mem::MaybeUninit;
2353    ///
2354    /// let m = MaybeUninit::<UnsafeCell<i32>>::uninit();
2355    /// unsafe { UnsafeCell::raw_get(m.as_ptr()).write(5); }
2356    /// // avoid below which references to uninitialized data
2357    /// // unsafe { UnsafeCell::get(&*m.as_ptr()).write(5); }
2358    /// let uc = unsafe { m.assume_init() };
2359    ///
2360    /// assert_eq!(uc.into_inner(), 5);
2361    /// ```
2362    #[inline(always)]
2363    #[stable(feature = "unsafe_cell_raw_get", since = "1.56.0")]
2364    #[rustc_const_stable(feature = "unsafe_cell_raw_get", since = "1.56.0")]
2365    #[rustc_diagnostic_item = "unsafe_cell_raw_get"]
2366    pub const fn raw_get(this: *const Self) -> *mut T {
2367        // We can just cast the pointer from `UnsafeCell<T>` to `T` because of
2368        // #[repr(transparent)]. This exploits std's special status, there is
2369        // no guarantee for user code that this will work in future versions of the compiler!
2370        this as *const T as *mut T
2371    }
2372
2373    /// Get a shared reference to the value within the `UnsafeCell`.
2374    ///
2375    /// # Safety
2376    ///
2377    /// - It is Undefined Behavior to call this while any mutable
2378    ///   reference to the wrapped value is alive.
2379    /// - Mutating the wrapped value while the returned
2380    ///   reference is alive is Undefined Behavior.
2381    ///
2382    /// # Examples
2383    ///
2384    /// ```
2385    /// #![feature(unsafe_cell_access)]
2386    /// use std::cell::UnsafeCell;
2387    ///
2388    /// let uc = UnsafeCell::new(5);
2389    ///
2390    /// let val = unsafe { uc.as_ref_unchecked() };
2391    /// assert_eq!(val, &5);
2392    /// ```
2393    #[inline]
2394    #[unstable(feature = "unsafe_cell_access", issue = "136327")]
2395    pub const unsafe fn as_ref_unchecked(&self) -> &T {
2396        // SAFETY: pointer comes from `&self` so naturally satisfies ptr-to-ref invariants.
2397        unsafe { self.get().as_ref_unchecked() }
2398    }
2399
2400    /// Get an exclusive reference to the value within the `UnsafeCell`.
2401    ///
2402    /// # Safety
2403    ///
2404    /// - It is Undefined Behavior to call this while any other
2405    ///   reference(s) to the wrapped value are alive.
2406    /// - Mutating the wrapped value through other means while the
2407    ///   returned reference is alive is Undefined Behavior.
2408    ///
2409    /// # Examples
2410    ///
2411    /// ```
2412    /// #![feature(unsafe_cell_access)]
2413    /// use std::cell::UnsafeCell;
2414    ///
2415    /// let uc = UnsafeCell::new(5);
2416    ///
2417    /// unsafe { *uc.as_mut_unchecked() += 1; }
2418    /// assert_eq!(uc.into_inner(), 6);
2419    /// ```
2420    #[inline]
2421    #[unstable(feature = "unsafe_cell_access", issue = "136327")]
2422    #[allow(clippy::mut_from_ref)]
2423    pub const unsafe fn as_mut_unchecked(&self) -> &mut T {
2424        // SAFETY: pointer comes from `&self` so naturally satisfies ptr-to-ref invariants.
2425        unsafe { self.get().as_mut_unchecked() }
2426    }
2427}
2428
2429#[stable(feature = "unsafe_cell_default", since = "1.10.0")]
2430#[rustc_const_unstable(feature = "const_default", issue = "143894")]
2431impl<T: [const] Default> const Default for UnsafeCell<T> {
2432    /// Creates an `UnsafeCell`, with the `Default` value for T.
2433    fn default() -> UnsafeCell<T> {
2434        UnsafeCell::new(Default::default())
2435    }
2436}
2437
2438#[stable(feature = "cell_from", since = "1.12.0")]
2439#[rustc_const_unstable(feature = "const_convert", issue = "143773")]
2440impl<T> const From<T> for UnsafeCell<T> {
2441    /// Creates a new `UnsafeCell<T>` containing the given value.
2442    fn from(t: T) -> UnsafeCell<T> {
2443        UnsafeCell::new(t)
2444    }
2445}
2446
2447#[unstable(feature = "coerce_unsized", issue = "18598")]
2448impl<T: CoerceUnsized<U>, U> CoerceUnsized<UnsafeCell<U>> for UnsafeCell<T> {}
2449
2450// Allow types that wrap `UnsafeCell` to also implement `DispatchFromDyn`
2451// and become dyn-compatible method receivers.
2452// Note that currently `UnsafeCell` itself cannot be a method receiver
2453// because it does not implement Deref.
2454// In other words:
2455// `self: UnsafeCell<&Self>` won't work
2456// `self: UnsafeCellWrapper<Self>` becomes possible
2457#[unstable(feature = "dispatch_from_dyn", issue = "none")]
2458impl<T: DispatchFromDyn<U>, U> DispatchFromDyn<UnsafeCell<U>> for UnsafeCell<T> {}
2459
2460/// [`UnsafeCell`], but [`Sync`].
2461///
2462/// This is just an `UnsafeCell`, except it implements `Sync`
2463/// if `T` implements `Sync`.
2464///
2465/// `UnsafeCell` doesn't implement `Sync`, to prevent accidental mis-use.
2466/// You can use `SyncUnsafeCell` instead of `UnsafeCell` to allow it to be
2467/// shared between threads, if that's intentional.
2468/// Providing proper synchronization is still the task of the user,
2469/// making this type just as unsafe to use.
2470///
2471/// See [`UnsafeCell`] for details.
2472#[unstable(feature = "sync_unsafe_cell", issue = "95439")]
2473#[repr(transparent)]
2474#[rustc_diagnostic_item = "SyncUnsafeCell"]
2475#[rustc_pub_transparent]
2476pub struct SyncUnsafeCell<T: ?Sized> {
2477    value: UnsafeCell<T>,
2478}
2479
2480#[unstable(feature = "sync_unsafe_cell", issue = "95439")]
2481unsafe impl<T: ?Sized + Sync> Sync for SyncUnsafeCell<T> {}
2482
2483#[unstable(feature = "sync_unsafe_cell", issue = "95439")]
2484impl<T> SyncUnsafeCell<T> {
2485    /// Constructs a new instance of `SyncUnsafeCell` which will wrap the specified value.
2486    #[inline]
2487    pub const fn new(value: T) -> Self {
2488        Self { value: UnsafeCell { value } }
2489    }
2490
2491    /// Unwraps the value, consuming the cell.
2492    #[inline]
2493    #[rustc_const_unstable(feature = "sync_unsafe_cell", issue = "95439")]
2494    pub const fn into_inner(self) -> T {
2495        self.value.into_inner()
2496    }
2497}
2498
2499#[unstable(feature = "sync_unsafe_cell", issue = "95439")]
2500impl<T: ?Sized> SyncUnsafeCell<T> {
2501    /// Gets a mutable pointer to the wrapped value.
2502    ///
2503    /// This can be cast to a pointer of any kind.
2504    /// Ensure that the access is unique (no active references, mutable or not)
2505    /// when casting to `&mut T`, and ensure that there are no mutations
2506    /// or mutable aliases going on when casting to `&T`
2507    #[inline]
2508    #[rustc_as_ptr]
2509    #[rustc_never_returns_null_ptr]
2510    pub const fn get(&self) -> *mut T {
2511        self.value.get()
2512    }
2513
2514    /// Returns a mutable reference to the underlying data.
2515    ///
2516    /// This call borrows the `SyncUnsafeCell` mutably (at compile-time) which
2517    /// guarantees that we possess the only reference.
2518    #[inline]
2519    pub const fn get_mut(&mut self) -> &mut T {
2520        self.value.get_mut()
2521    }
2522
2523    /// Gets a mutable pointer to the wrapped value.
2524    ///
2525    /// See [`UnsafeCell::get`] for details.
2526    #[inline]
2527    pub const fn raw_get(this: *const Self) -> *mut T {
2528        // We can just cast the pointer from `SyncUnsafeCell<T>` to `T` because
2529        // of #[repr(transparent)] on both SyncUnsafeCell and UnsafeCell.
2530        // See UnsafeCell::raw_get.
2531        this as *const T as *mut T
2532    }
2533}
2534
2535#[unstable(feature = "sync_unsafe_cell", issue = "95439")]
2536#[rustc_const_unstable(feature = "const_default", issue = "143894")]
2537impl<T: [const] Default> const Default for SyncUnsafeCell<T> {
2538    /// Creates an `SyncUnsafeCell`, with the `Default` value for T.
2539    fn default() -> SyncUnsafeCell<T> {
2540        SyncUnsafeCell::new(Default::default())
2541    }
2542}
2543
2544#[unstable(feature = "sync_unsafe_cell", issue = "95439")]
2545#[rustc_const_unstable(feature = "const_convert", issue = "143773")]
2546impl<T> const From<T> for SyncUnsafeCell<T> {
2547    /// Creates a new `SyncUnsafeCell<T>` containing the given value.
2548    fn from(t: T) -> SyncUnsafeCell<T> {
2549        SyncUnsafeCell::new(t)
2550    }
2551}
2552
2553#[unstable(feature = "coerce_unsized", issue = "18598")]
2554//#[unstable(feature = "sync_unsafe_cell", issue = "95439")]
2555impl<T: CoerceUnsized<U>, U> CoerceUnsized<SyncUnsafeCell<U>> for SyncUnsafeCell<T> {}
2556
2557// Allow types that wrap `SyncUnsafeCell` to also implement `DispatchFromDyn`
2558// and become dyn-compatible method receivers.
2559// Note that currently `SyncUnsafeCell` itself cannot be a method receiver
2560// because it does not implement Deref.
2561// In other words:
2562// `self: SyncUnsafeCell<&Self>` won't work
2563// `self: SyncUnsafeCellWrapper<Self>` becomes possible
2564#[unstable(feature = "dispatch_from_dyn", issue = "none")]
2565//#[unstable(feature = "sync_unsafe_cell", issue = "95439")]
2566impl<T: DispatchFromDyn<U>, U> DispatchFromDyn<SyncUnsafeCell<U>> for SyncUnsafeCell<T> {}
2567
2568#[allow(unused)]
2569fn assert_coerce_unsized(
2570    a: UnsafeCell<&i32>,
2571    b: SyncUnsafeCell<&i32>,
2572    c: Cell<&i32>,
2573    d: RefCell<&i32>,
2574) {
2575    let _: UnsafeCell<&dyn Send> = a;
2576    let _: SyncUnsafeCell<&dyn Send> = b;
2577    let _: Cell<&dyn Send> = c;
2578    let _: RefCell<&dyn Send> = d;
2579}
2580
2581#[unstable(feature = "pin_coerce_unsized_trait", issue = "123430")]
2582unsafe impl<T: ?Sized> PinCoerceUnsized for UnsafeCell<T> {}
2583
2584#[unstable(feature = "pin_coerce_unsized_trait", issue = "123430")]
2585unsafe impl<T: ?Sized> PinCoerceUnsized for SyncUnsafeCell<T> {}
2586
2587#[unstable(feature = "pin_coerce_unsized_trait", issue = "123430")]
2588unsafe impl<T: ?Sized> PinCoerceUnsized for Cell<T> {}
2589
2590#[unstable(feature = "pin_coerce_unsized_trait", issue = "123430")]
2591unsafe impl<T: ?Sized> PinCoerceUnsized for RefCell<T> {}
2592
2593#[unstable(feature = "pin_coerce_unsized_trait", issue = "123430")]
2594unsafe impl<'b, T: ?Sized> PinCoerceUnsized for Ref<'b, T> {}
2595
2596#[unstable(feature = "pin_coerce_unsized_trait", issue = "123430")]
2597unsafe impl<'b, T: ?Sized> PinCoerceUnsized for RefMut<'b, T> {}