alloc/collections/btree/map.rs
1use core::borrow::Borrow;
2use core::cmp::Ordering;
3use core::error::Error;
4use core::fmt::{self, Debug};
5use core::hash::{Hash, Hasher};
6use core::iter::FusedIterator;
7use core::marker::PhantomData;
8use core::mem::{self, ManuallyDrop};
9use core::ops::{Bound, Index, RangeBounds};
10use core::ptr;
11
12use super::borrow::DormantMutRef;
13use super::dedup_sorted_iter::DedupSortedIter;
14use super::navigate::{LazyLeafRange, LeafRange};
15use super::node::ForceResult::*;
16use super::node::{self, Handle, NodeRef, Root, marker};
17use super::search::SearchBound;
18use super::search::SearchResult::*;
19use super::set_val::SetValZST;
20use crate::alloc::{Allocator, Global};
21use crate::vec::Vec;
22
23mod entry;
24
25use Entry::*;
26#[stable(feature = "rust1", since = "1.0.0")]
27pub use entry::{Entry, OccupiedEntry, OccupiedError, VacantEntry};
28
29/// Minimum number of elements in a node that is not a root.
30/// We might temporarily have fewer elements during methods.
31pub(super) const MIN_LEN: usize = node::MIN_LEN_AFTER_SPLIT;
32
33// A tree in a `BTreeMap` is a tree in the `node` module with additional invariants:
34// - Keys must appear in ascending order (according to the key's type).
35// - Every non-leaf node contains at least 1 element (has at least 2 children).
36// - Every non-root node contains at least MIN_LEN elements.
37//
38// An empty map is represented either by the absence of a root node or by a
39// root node that is an empty leaf.
40
41/// An ordered map based on a [B-Tree].
42///
43/// Given a key type with a [total order], an ordered map stores its entries in key order.
44/// That means that keys must be of a type that implements the [`Ord`] trait,
45/// such that two keys can always be compared to determine their [`Ordering`].
46/// Examples of keys with a total order are strings with lexicographical order,
47/// and numbers with their natural order.
48///
49/// Iterators obtained from functions such as [`BTreeMap::iter`], [`BTreeMap::into_iter`], [`BTreeMap::values`], or
50/// [`BTreeMap::keys`] produce their items in key order, and take worst-case logarithmic and
51/// amortized constant time per item returned.
52///
53/// It is a logic error for a key to be modified in such a way that the key's ordering relative to
54/// any other key, as determined by the [`Ord`] trait, changes while it is in the map. This is
55/// normally only possible through [`Cell`], [`RefCell`], global state, I/O, or unsafe code.
56/// The behavior resulting from such a logic error is not specified, but will be encapsulated to the
57/// `BTreeMap` that observed the logic error and not result in undefined behavior. This could
58/// include panics, incorrect results, aborts, memory leaks, and non-termination.
59///
60/// # Examples
61///
62/// ```
63/// use std::collections::BTreeMap;
64///
65/// // type inference lets us omit an explicit type signature (which
66/// // would be `BTreeMap<&str, &str>` in this example).
67/// let mut movie_reviews = BTreeMap::new();
68///
69/// // review some movies.
70/// movie_reviews.insert("Office Space", "Deals with real issues in the workplace.");
71/// movie_reviews.insert("Pulp Fiction", "Masterpiece.");
72/// movie_reviews.insert("The Godfather", "Very enjoyable.");
73/// movie_reviews.insert("The Blues Brothers", "Eye lyked it a lot.");
74///
75/// // check for a specific one.
76/// if !movie_reviews.contains_key("Les Misérables") {
77/// println!("We've got {} reviews, but Les Misérables ain't one.",
78/// movie_reviews.len());
79/// }
80///
81/// // oops, this review has a lot of spelling mistakes, let's delete it.
82/// movie_reviews.remove("The Blues Brothers");
83///
84/// // look up the values associated with some keys.
85/// let to_find = ["Up!", "Office Space"];
86/// for movie in &to_find {
87/// match movie_reviews.get(movie) {
88/// Some(review) => println!("{movie}: {review}"),
89/// None => println!("{movie} is unreviewed.")
90/// }
91/// }
92///
93/// // Look up the value for a key (will panic if the key is not found).
94/// println!("Movie review: {}", movie_reviews["Office Space"]);
95///
96/// // iterate over everything.
97/// for (movie, review) in &movie_reviews {
98/// println!("{movie}: \"{review}\"");
99/// }
100/// ```
101///
102/// A `BTreeMap` with a known list of items can be initialized from an array:
103///
104/// ```
105/// use std::collections::BTreeMap;
106///
107/// let solar_distance = BTreeMap::from([
108/// ("Mercury", 0.4),
109/// ("Venus", 0.7),
110/// ("Earth", 1.0),
111/// ("Mars", 1.5),
112/// ]);
113/// ```
114///
115/// ## `Entry` API
116///
117/// `BTreeMap` implements an [`Entry API`], which allows for complex
118/// methods of getting, setting, updating and removing keys and their values:
119///
120/// [`Entry API`]: BTreeMap::entry
121///
122/// ```
123/// use std::collections::BTreeMap;
124///
125/// // type inference lets us omit an explicit type signature (which
126/// // would be `BTreeMap<&str, u8>` in this example).
127/// let mut player_stats = BTreeMap::new();
128///
129/// fn random_stat_buff() -> u8 {
130/// // could actually return some random value here - let's just return
131/// // some fixed value for now
132/// 42
133/// }
134///
135/// // insert a key only if it doesn't already exist
136/// player_stats.entry("health").or_insert(100);
137///
138/// // insert a key using a function that provides a new value only if it
139/// // doesn't already exist
140/// player_stats.entry("defence").or_insert_with(random_stat_buff);
141///
142/// // update a key, guarding against the key possibly not being set
143/// let stat = player_stats.entry("attack").or_insert(100);
144/// *stat += random_stat_buff();
145///
146/// // modify an entry before an insert with in-place mutation
147/// player_stats.entry("mana").and_modify(|mana| *mana += 200).or_insert(100);
148/// ```
149///
150/// # Background
151///
152/// A B-tree is (like) a [binary search tree], but adapted to the natural granularity that modern
153/// machines like to consume data at. This means that each node contains an entire array of elements,
154/// instead of just a single element.
155///
156/// B-Trees represent a fundamental compromise between cache-efficiency and actually minimizing
157/// the amount of work performed in a search. In theory, a binary search tree (BST) is the optimal
158/// choice for a sorted map, as a perfectly balanced BST performs the theoretical minimum number of
159/// comparisons necessary to find an element (log<sub>2</sub>n). However, in practice the way this
160/// is done is *very* inefficient for modern computer architectures. In particular, every element
161/// is stored in its own individually heap-allocated node. This means that every single insertion
162/// triggers a heap-allocation, and every comparison is a potential cache-miss due to the indirection.
163/// Since both heap-allocations and cache-misses are notably expensive in practice, we are forced to,
164/// at the very least, reconsider the BST strategy.
165///
166/// A B-Tree instead makes each node contain B-1 to 2B-1 elements in a contiguous array. By doing
167/// this, we reduce the number of allocations by a factor of B, and improve cache efficiency in
168/// searches. However, this does mean that searches will have to do *more* comparisons on average.
169/// The precise number of comparisons depends on the node search strategy used. For optimal cache
170/// efficiency, one could search the nodes linearly. For optimal comparisons, one could search
171/// the node using binary search. As a compromise, one could also perform a linear search
172/// that initially only checks every i<sup>th</sup> element for some choice of i.
173///
174/// Currently, our implementation simply performs naive linear search. This provides excellent
175/// performance on *small* nodes of elements which are cheap to compare. However in the future we
176/// would like to further explore choosing the optimal search strategy based on the choice of B,
177/// and possibly other factors. Using linear search, searching for a random element is expected
178/// to take B * log(n) comparisons, which is generally worse than a BST. In practice,
179/// however, performance is excellent.
180///
181/// [B-Tree]: https://en.wikipedia.org/wiki/B-tree
182/// [binary search tree]: https://en.wikipedia.org/wiki/Binary_search_tree
183/// [total order]: https://en.wikipedia.org/wiki/Total_order
184/// [`Cell`]: core::cell::Cell
185/// [`RefCell`]: core::cell::RefCell
186#[stable(feature = "rust1", since = "1.0.0")]
187#[cfg_attr(not(test), rustc_diagnostic_item = "BTreeMap")]
188#[rustc_insignificant_dtor]
189pub struct BTreeMap<
190 K,
191 V,
192 #[unstable(feature = "allocator_api", issue = "32838")] A: Allocator + Clone = Global,
193> {
194 root: Option<Root<K, V>>,
195 length: usize,
196 /// `ManuallyDrop` to control drop order (needs to be dropped after all the nodes).
197 pub(super) alloc: ManuallyDrop<A>,
198 // For dropck; the `Box` avoids making the `Unpin` impl more strict than before
199 _marker: PhantomData<crate::boxed::Box<(K, V), A>>,
200}
201
202#[stable(feature = "btree_drop", since = "1.7.0")]
203unsafe impl<#[may_dangle] K, #[may_dangle] V, A: Allocator + Clone> Drop for BTreeMap<K, V, A> {
204 fn drop(&mut self) {
205 drop(unsafe { ptr::read(self) }.into_iter())
206 }
207}
208
209// FIXME: This implementation is "wrong", but changing it would be a breaking change.
210// (The bounds of the automatic `UnwindSafe` implementation have been like this since Rust 1.50.)
211// Maybe we can fix it nonetheless with a crater run, or if the `UnwindSafe`
212// traits are deprecated, or disarmed (no longer causing hard errors) in the future.
213#[stable(feature = "btree_unwindsafe", since = "1.64.0")]
214impl<K, V, A: Allocator + Clone> core::panic::UnwindSafe for BTreeMap<K, V, A>
215where
216 A: core::panic::UnwindSafe,
217 K: core::panic::RefUnwindSafe,
218 V: core::panic::RefUnwindSafe,
219{
220}
221
222#[stable(feature = "rust1", since = "1.0.0")]
223impl<K: Clone, V: Clone, A: Allocator + Clone> Clone for BTreeMap<K, V, A> {
224 fn clone(&self) -> BTreeMap<K, V, A> {
225 fn clone_subtree<'a, K: Clone, V: Clone, A: Allocator + Clone>(
226 node: NodeRef<marker::Immut<'a>, K, V, marker::LeafOrInternal>,
227 alloc: A,
228 ) -> BTreeMap<K, V, A>
229 where
230 K: 'a,
231 V: 'a,
232 {
233 match node.force() {
234 Leaf(leaf) => {
235 let mut out_tree = BTreeMap {
236 root: Some(Root::new(alloc.clone())),
237 length: 0,
238 alloc: ManuallyDrop::new(alloc),
239 _marker: PhantomData,
240 };
241
242 {
243 let root = out_tree.root.as_mut().unwrap(); // unwrap succeeds because we just wrapped
244 let mut out_node = match root.borrow_mut().force() {
245 Leaf(leaf) => leaf,
246 Internal(_) => unreachable!(),
247 };
248
249 let mut in_edge = leaf.first_edge();
250 while let Ok(kv) = in_edge.right_kv() {
251 let (k, v) = kv.into_kv();
252 in_edge = kv.right_edge();
253
254 out_node.push(k.clone(), v.clone());
255 out_tree.length += 1;
256 }
257 }
258
259 out_tree
260 }
261 Internal(internal) => {
262 let mut out_tree =
263 clone_subtree(internal.first_edge().descend(), alloc.clone());
264
265 {
266 let out_root = out_tree.root.as_mut().unwrap();
267 let mut out_node = out_root.push_internal_level(alloc.clone());
268 let mut in_edge = internal.first_edge();
269 while let Ok(kv) = in_edge.right_kv() {
270 let (k, v) = kv.into_kv();
271 in_edge = kv.right_edge();
272
273 let k = (*k).clone();
274 let v = (*v).clone();
275 let subtree = clone_subtree(in_edge.descend(), alloc.clone());
276
277 // We can't destructure subtree directly
278 // because BTreeMap implements Drop
279 let (subroot, sublength) = unsafe {
280 let subtree = ManuallyDrop::new(subtree);
281 let root = ptr::read(&subtree.root);
282 let length = subtree.length;
283 (root, length)
284 };
285
286 out_node.push(
287 k,
288 v,
289 subroot.unwrap_or_else(|| Root::new(alloc.clone())),
290 );
291 out_tree.length += 1 + sublength;
292 }
293 }
294
295 out_tree
296 }
297 }
298 }
299
300 if self.is_empty() {
301 BTreeMap::new_in((*self.alloc).clone())
302 } else {
303 clone_subtree(self.root.as_ref().unwrap().reborrow(), (*self.alloc).clone()) // unwrap succeeds because not empty
304 }
305 }
306}
307
308// Internal functionality for `BTreeSet`.
309impl<K, A: Allocator + Clone> BTreeMap<K, SetValZST, A> {
310 pub(super) fn replace(&mut self, key: K) -> Option<K>
311 where
312 K: Ord,
313 {
314 let (map, dormant_map) = DormantMutRef::new(self);
315 let root_node =
316 map.root.get_or_insert_with(|| Root::new((*map.alloc).clone())).borrow_mut();
317 match root_node.search_tree::<K>(&key) {
318 Found(mut kv) => Some(mem::replace(kv.key_mut(), key)),
319 GoDown(handle) => {
320 VacantEntry {
321 key,
322 handle: Some(handle),
323 dormant_map,
324 alloc: (*map.alloc).clone(),
325 _marker: PhantomData,
326 }
327 .insert(SetValZST);
328 None
329 }
330 }
331 }
332
333 pub(super) fn get_or_insert_with<Q: ?Sized, F>(&mut self, q: &Q, f: F) -> &K
334 where
335 K: Borrow<Q> + Ord,
336 Q: Ord,
337 F: FnOnce(&Q) -> K,
338 {
339 let (map, dormant_map) = DormantMutRef::new(self);
340 let root_node =
341 map.root.get_or_insert_with(|| Root::new((*map.alloc).clone())).borrow_mut();
342 match root_node.search_tree(q) {
343 Found(handle) => handle.into_kv_mut().0,
344 GoDown(handle) => {
345 let key = f(q);
346 assert!(*key.borrow() == *q, "new value is not equal");
347 VacantEntry {
348 key,
349 handle: Some(handle),
350 dormant_map,
351 alloc: (*map.alloc).clone(),
352 _marker: PhantomData,
353 }
354 .insert_entry(SetValZST)
355 .into_key()
356 }
357 }
358 }
359}
360
361/// An iterator over the entries of a `BTreeMap`.
362///
363/// This `struct` is created by the [`iter`] method on [`BTreeMap`]. See its
364/// documentation for more.
365///
366/// [`iter`]: BTreeMap::iter
367#[must_use = "iterators are lazy and do nothing unless consumed"]
368#[stable(feature = "rust1", since = "1.0.0")]
369pub struct Iter<'a, K: 'a, V: 'a> {
370 range: LazyLeafRange<marker::Immut<'a>, K, V>,
371 length: usize,
372}
373
374#[stable(feature = "collection_debug", since = "1.17.0")]
375impl<K: fmt::Debug, V: fmt::Debug> fmt::Debug for Iter<'_, K, V> {
376 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
377 f.debug_list().entries(self.clone()).finish()
378 }
379}
380
381#[stable(feature = "default_iters", since = "1.70.0")]
382impl<'a, K: 'a, V: 'a> Default for Iter<'a, K, V> {
383 /// Creates an empty `btree_map::Iter`.
384 ///
385 /// ```
386 /// # use std::collections::btree_map;
387 /// let iter: btree_map::Iter<'_, u8, u8> = Default::default();
388 /// assert_eq!(iter.len(), 0);
389 /// ```
390 fn default() -> Self {
391 Iter { range: Default::default(), length: 0 }
392 }
393}
394
395/// A mutable iterator over the entries of a `BTreeMap`.
396///
397/// This `struct` is created by the [`iter_mut`] method on [`BTreeMap`]. See its
398/// documentation for more.
399///
400/// [`iter_mut`]: BTreeMap::iter_mut
401#[must_use = "iterators are lazy and do nothing unless consumed"]
402#[stable(feature = "rust1", since = "1.0.0")]
403pub struct IterMut<'a, K: 'a, V: 'a> {
404 range: LazyLeafRange<marker::ValMut<'a>, K, V>,
405 length: usize,
406
407 // Be invariant in `K` and `V`
408 _marker: PhantomData<&'a mut (K, V)>,
409}
410
411#[stable(feature = "collection_debug", since = "1.17.0")]
412impl<K: fmt::Debug, V: fmt::Debug> fmt::Debug for IterMut<'_, K, V> {
413 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
414 let range = Iter { range: self.range.reborrow(), length: self.length };
415 f.debug_list().entries(range).finish()
416 }
417}
418
419#[stable(feature = "default_iters", since = "1.70.0")]
420impl<'a, K: 'a, V: 'a> Default for IterMut<'a, K, V> {
421 /// Creates an empty `btree_map::IterMut`.
422 ///
423 /// ```
424 /// # use std::collections::btree_map;
425 /// let iter: btree_map::IterMut<'_, u8, u8> = Default::default();
426 /// assert_eq!(iter.len(), 0);
427 /// ```
428 fn default() -> Self {
429 IterMut { range: Default::default(), length: 0, _marker: PhantomData {} }
430 }
431}
432
433/// An owning iterator over the entries of a `BTreeMap`, sorted by key.
434///
435/// This `struct` is created by the [`into_iter`] method on [`BTreeMap`]
436/// (provided by the [`IntoIterator`] trait). See its documentation for more.
437///
438/// [`into_iter`]: IntoIterator::into_iter
439#[stable(feature = "rust1", since = "1.0.0")]
440#[rustc_insignificant_dtor]
441pub struct IntoIter<
442 K,
443 V,
444 #[unstable(feature = "allocator_api", issue = "32838")] A: Allocator + Clone = Global,
445> {
446 range: LazyLeafRange<marker::Dying, K, V>,
447 length: usize,
448 /// The BTreeMap will outlive this IntoIter so we don't care about drop order for `alloc`.
449 alloc: A,
450}
451
452impl<K, V, A: Allocator + Clone> IntoIter<K, V, A> {
453 /// Returns an iterator of references over the remaining items.
454 #[inline]
455 pub(super) fn iter(&self) -> Iter<'_, K, V> {
456 Iter { range: self.range.reborrow(), length: self.length }
457 }
458}
459
460#[stable(feature = "collection_debug", since = "1.17.0")]
461impl<K: Debug, V: Debug, A: Allocator + Clone> Debug for IntoIter<K, V, A> {
462 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
463 f.debug_list().entries(self.iter()).finish()
464 }
465}
466
467#[stable(feature = "default_iters", since = "1.70.0")]
468impl<K, V, A> Default for IntoIter<K, V, A>
469where
470 A: Allocator + Default + Clone,
471{
472 /// Creates an empty `btree_map::IntoIter`.
473 ///
474 /// ```
475 /// # use std::collections::btree_map;
476 /// let iter: btree_map::IntoIter<u8, u8> = Default::default();
477 /// assert_eq!(iter.len(), 0);
478 /// ```
479 fn default() -> Self {
480 IntoIter { range: Default::default(), length: 0, alloc: Default::default() }
481 }
482}
483
484/// An iterator over the keys of a `BTreeMap`.
485///
486/// This `struct` is created by the [`keys`] method on [`BTreeMap`]. See its
487/// documentation for more.
488///
489/// [`keys`]: BTreeMap::keys
490#[must_use = "iterators are lazy and do nothing unless consumed"]
491#[stable(feature = "rust1", since = "1.0.0")]
492pub struct Keys<'a, K, V> {
493 inner: Iter<'a, K, V>,
494}
495
496#[stable(feature = "collection_debug", since = "1.17.0")]
497impl<K: fmt::Debug, V> fmt::Debug for Keys<'_, K, V> {
498 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
499 f.debug_list().entries(self.clone()).finish()
500 }
501}
502
503/// An iterator over the values of a `BTreeMap`.
504///
505/// This `struct` is created by the [`values`] method on [`BTreeMap`]. See its
506/// documentation for more.
507///
508/// [`values`]: BTreeMap::values
509#[must_use = "iterators are lazy and do nothing unless consumed"]
510#[stable(feature = "rust1", since = "1.0.0")]
511pub struct Values<'a, K, V> {
512 inner: Iter<'a, K, V>,
513}
514
515#[stable(feature = "collection_debug", since = "1.17.0")]
516impl<K, V: fmt::Debug> fmt::Debug for Values<'_, K, V> {
517 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
518 f.debug_list().entries(self.clone()).finish()
519 }
520}
521
522/// A mutable iterator over the values of a `BTreeMap`.
523///
524/// This `struct` is created by the [`values_mut`] method on [`BTreeMap`]. See its
525/// documentation for more.
526///
527/// [`values_mut`]: BTreeMap::values_mut
528#[must_use = "iterators are lazy and do nothing unless consumed"]
529#[stable(feature = "map_values_mut", since = "1.10.0")]
530pub struct ValuesMut<'a, K, V> {
531 inner: IterMut<'a, K, V>,
532}
533
534#[stable(feature = "map_values_mut", since = "1.10.0")]
535impl<K, V: fmt::Debug> fmt::Debug for ValuesMut<'_, K, V> {
536 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
537 f.debug_list().entries(self.inner.iter().map(|(_, val)| val)).finish()
538 }
539}
540
541/// An owning iterator over the keys of a `BTreeMap`.
542///
543/// This `struct` is created by the [`into_keys`] method on [`BTreeMap`].
544/// See its documentation for more.
545///
546/// [`into_keys`]: BTreeMap::into_keys
547#[must_use = "iterators are lazy and do nothing unless consumed"]
548#[stable(feature = "map_into_keys_values", since = "1.54.0")]
549pub struct IntoKeys<K, V, A: Allocator + Clone = Global> {
550 inner: IntoIter<K, V, A>,
551}
552
553#[stable(feature = "map_into_keys_values", since = "1.54.0")]
554impl<K: fmt::Debug, V, A: Allocator + Clone> fmt::Debug for IntoKeys<K, V, A> {
555 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
556 f.debug_list().entries(self.inner.iter().map(|(key, _)| key)).finish()
557 }
558}
559
560/// An owning iterator over the values of a `BTreeMap`.
561///
562/// This `struct` is created by the [`into_values`] method on [`BTreeMap`].
563/// See its documentation for more.
564///
565/// [`into_values`]: BTreeMap::into_values
566#[must_use = "iterators are lazy and do nothing unless consumed"]
567#[stable(feature = "map_into_keys_values", since = "1.54.0")]
568pub struct IntoValues<
569 K,
570 V,
571 #[unstable(feature = "allocator_api", issue = "32838")] A: Allocator + Clone = Global,
572> {
573 inner: IntoIter<K, V, A>,
574}
575
576#[stable(feature = "map_into_keys_values", since = "1.54.0")]
577impl<K, V: fmt::Debug, A: Allocator + Clone> fmt::Debug for IntoValues<K, V, A> {
578 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
579 f.debug_list().entries(self.inner.iter().map(|(_, val)| val)).finish()
580 }
581}
582
583/// An iterator over a sub-range of entries in a `BTreeMap`.
584///
585/// This `struct` is created by the [`range`] method on [`BTreeMap`]. See its
586/// documentation for more.
587///
588/// [`range`]: BTreeMap::range
589#[must_use = "iterators are lazy and do nothing unless consumed"]
590#[stable(feature = "btree_range", since = "1.17.0")]
591pub struct Range<'a, K: 'a, V: 'a> {
592 inner: LeafRange<marker::Immut<'a>, K, V>,
593}
594
595#[stable(feature = "collection_debug", since = "1.17.0")]
596impl<K: fmt::Debug, V: fmt::Debug> fmt::Debug for Range<'_, K, V> {
597 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
598 f.debug_list().entries(self.clone()).finish()
599 }
600}
601
602/// A mutable iterator over a sub-range of entries in a `BTreeMap`.
603///
604/// This `struct` is created by the [`range_mut`] method on [`BTreeMap`]. See its
605/// documentation for more.
606///
607/// [`range_mut`]: BTreeMap::range_mut
608#[must_use = "iterators are lazy and do nothing unless consumed"]
609#[stable(feature = "btree_range", since = "1.17.0")]
610pub struct RangeMut<'a, K: 'a, V: 'a> {
611 inner: LeafRange<marker::ValMut<'a>, K, V>,
612
613 // Be invariant in `K` and `V`
614 _marker: PhantomData<&'a mut (K, V)>,
615}
616
617#[stable(feature = "collection_debug", since = "1.17.0")]
618impl<K: fmt::Debug, V: fmt::Debug> fmt::Debug for RangeMut<'_, K, V> {
619 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
620 let range = Range { inner: self.inner.reborrow() };
621 f.debug_list().entries(range).finish()
622 }
623}
624
625impl<K, V> BTreeMap<K, V> {
626 /// Makes a new, empty `BTreeMap`.
627 ///
628 /// Does not allocate anything on its own.
629 ///
630 /// # Examples
631 ///
632 /// ```
633 /// use std::collections::BTreeMap;
634 ///
635 /// let mut map = BTreeMap::new();
636 ///
637 /// // entries can now be inserted into the empty map
638 /// map.insert(1, "a");
639 /// ```
640 #[stable(feature = "rust1", since = "1.0.0")]
641 #[rustc_const_stable(feature = "const_btree_new", since = "1.66.0")]
642 #[inline]
643 #[must_use]
644 pub const fn new() -> BTreeMap<K, V> {
645 BTreeMap { root: None, length: 0, alloc: ManuallyDrop::new(Global), _marker: PhantomData }
646 }
647}
648
649impl<K, V, A: Allocator + Clone> BTreeMap<K, V, A> {
650 /// Clears the map, removing all elements.
651 ///
652 /// # Examples
653 ///
654 /// ```
655 /// use std::collections::BTreeMap;
656 ///
657 /// let mut a = BTreeMap::new();
658 /// a.insert(1, "a");
659 /// a.clear();
660 /// assert!(a.is_empty());
661 /// ```
662 #[stable(feature = "rust1", since = "1.0.0")]
663 pub fn clear(&mut self) {
664 // avoid moving the allocator
665 drop(BTreeMap {
666 root: mem::replace(&mut self.root, None),
667 length: mem::replace(&mut self.length, 0),
668 alloc: self.alloc.clone(),
669 _marker: PhantomData,
670 });
671 }
672
673 /// Makes a new empty BTreeMap with a reasonable choice for B.
674 ///
675 /// # Examples
676 ///
677 /// ```
678 /// # #![feature(allocator_api)]
679 /// # #![feature(btreemap_alloc)]
680 /// use std::collections::BTreeMap;
681 /// use std::alloc::Global;
682 ///
683 /// let mut map = BTreeMap::new_in(Global);
684 ///
685 /// // entries can now be inserted into the empty map
686 /// map.insert(1, "a");
687 /// ```
688 #[unstable(feature = "btreemap_alloc", issue = "32838")]
689 pub const fn new_in(alloc: A) -> BTreeMap<K, V, A> {
690 BTreeMap { root: None, length: 0, alloc: ManuallyDrop::new(alloc), _marker: PhantomData }
691 }
692}
693
694impl<K, V, A: Allocator + Clone> BTreeMap<K, V, A> {
695 /// Returns a reference to the value corresponding to the key.
696 ///
697 /// The key may be any borrowed form of the map's key type, but the ordering
698 /// on the borrowed form *must* match the ordering on the key type.
699 ///
700 /// # Examples
701 ///
702 /// ```
703 /// use std::collections::BTreeMap;
704 ///
705 /// let mut map = BTreeMap::new();
706 /// map.insert(1, "a");
707 /// assert_eq!(map.get(&1), Some(&"a"));
708 /// assert_eq!(map.get(&2), None);
709 /// ```
710 #[stable(feature = "rust1", since = "1.0.0")]
711 pub fn get<Q: ?Sized>(&self, key: &Q) -> Option<&V>
712 where
713 K: Borrow<Q> + Ord,
714 Q: Ord,
715 {
716 let root_node = self.root.as_ref()?.reborrow();
717 match root_node.search_tree(key) {
718 Found(handle) => Some(handle.into_kv().1),
719 GoDown(_) => None,
720 }
721 }
722
723 /// Returns the key-value pair corresponding to the supplied key. This is
724 /// potentially useful:
725 /// - for key types where non-identical keys can be considered equal;
726 /// - for getting the `&K` stored key value from a borrowed `&Q` lookup key; or
727 /// - for getting a reference to a key with the same lifetime as the collection.
728 ///
729 /// The supplied key may be any borrowed form of the map's key type, but the ordering
730 /// on the borrowed form *must* match the ordering on the key type.
731 ///
732 /// # Examples
733 ///
734 /// ```
735 /// use std::cmp::Ordering;
736 /// use std::collections::BTreeMap;
737 ///
738 /// #[derive(Clone, Copy, Debug)]
739 /// struct S {
740 /// id: u32,
741 /// # #[allow(unused)] // prevents a "field `name` is never read" error
742 /// name: &'static str, // ignored by equality and ordering operations
743 /// }
744 ///
745 /// impl PartialEq for S {
746 /// fn eq(&self, other: &S) -> bool {
747 /// self.id == other.id
748 /// }
749 /// }
750 ///
751 /// impl Eq for S {}
752 ///
753 /// impl PartialOrd for S {
754 /// fn partial_cmp(&self, other: &S) -> Option<Ordering> {
755 /// self.id.partial_cmp(&other.id)
756 /// }
757 /// }
758 ///
759 /// impl Ord for S {
760 /// fn cmp(&self, other: &S) -> Ordering {
761 /// self.id.cmp(&other.id)
762 /// }
763 /// }
764 ///
765 /// let j_a = S { id: 1, name: "Jessica" };
766 /// let j_b = S { id: 1, name: "Jess" };
767 /// let p = S { id: 2, name: "Paul" };
768 /// assert_eq!(j_a, j_b);
769 ///
770 /// let mut map = BTreeMap::new();
771 /// map.insert(j_a, "Paris");
772 /// assert_eq!(map.get_key_value(&j_a), Some((&j_a, &"Paris")));
773 /// assert_eq!(map.get_key_value(&j_b), Some((&j_a, &"Paris"))); // the notable case
774 /// assert_eq!(map.get_key_value(&p), None);
775 /// ```
776 #[stable(feature = "map_get_key_value", since = "1.40.0")]
777 pub fn get_key_value<Q: ?Sized>(&self, k: &Q) -> Option<(&K, &V)>
778 where
779 K: Borrow<Q> + Ord,
780 Q: Ord,
781 {
782 let root_node = self.root.as_ref()?.reborrow();
783 match root_node.search_tree(k) {
784 Found(handle) => Some(handle.into_kv()),
785 GoDown(_) => None,
786 }
787 }
788
789 /// Returns the first key-value pair in the map.
790 /// The key in this pair is the minimum key in the map.
791 ///
792 /// # Examples
793 ///
794 /// ```
795 /// use std::collections::BTreeMap;
796 ///
797 /// let mut map = BTreeMap::new();
798 /// assert_eq!(map.first_key_value(), None);
799 /// map.insert(1, "b");
800 /// map.insert(2, "a");
801 /// assert_eq!(map.first_key_value(), Some((&1, &"b")));
802 /// ```
803 #[stable(feature = "map_first_last", since = "1.66.0")]
804 pub fn first_key_value(&self) -> Option<(&K, &V)>
805 where
806 K: Ord,
807 {
808 let root_node = self.root.as_ref()?.reborrow();
809 root_node.first_leaf_edge().right_kv().ok().map(Handle::into_kv)
810 }
811
812 /// Returns the first entry in the map for in-place manipulation.
813 /// The key of this entry is the minimum key in the map.
814 ///
815 /// # Examples
816 ///
817 /// ```
818 /// use std::collections::BTreeMap;
819 ///
820 /// let mut map = BTreeMap::new();
821 /// map.insert(1, "a");
822 /// map.insert(2, "b");
823 /// if let Some(mut entry) = map.first_entry() {
824 /// if *entry.key() > 0 {
825 /// entry.insert("first");
826 /// }
827 /// }
828 /// assert_eq!(*map.get(&1).unwrap(), "first");
829 /// assert_eq!(*map.get(&2).unwrap(), "b");
830 /// ```
831 #[stable(feature = "map_first_last", since = "1.66.0")]
832 pub fn first_entry(&mut self) -> Option<OccupiedEntry<'_, K, V, A>>
833 where
834 K: Ord,
835 {
836 let (map, dormant_map) = DormantMutRef::new(self);
837 let root_node = map.root.as_mut()?.borrow_mut();
838 let kv = root_node.first_leaf_edge().right_kv().ok()?;
839 Some(OccupiedEntry {
840 handle: kv.forget_node_type(),
841 dormant_map,
842 alloc: (*map.alloc).clone(),
843 _marker: PhantomData,
844 })
845 }
846
847 /// Removes and returns the first element in the map.
848 /// The key of this element is the minimum key that was in the map.
849 ///
850 /// # Examples
851 ///
852 /// Draining elements in ascending order, while keeping a usable map each iteration.
853 ///
854 /// ```
855 /// use std::collections::BTreeMap;
856 ///
857 /// let mut map = BTreeMap::new();
858 /// map.insert(1, "a");
859 /// map.insert(2, "b");
860 /// while let Some((key, _val)) = map.pop_first() {
861 /// assert!(map.iter().all(|(k, _v)| *k > key));
862 /// }
863 /// assert!(map.is_empty());
864 /// ```
865 #[stable(feature = "map_first_last", since = "1.66.0")]
866 pub fn pop_first(&mut self) -> Option<(K, V)>
867 where
868 K: Ord,
869 {
870 self.first_entry().map(|entry| entry.remove_entry())
871 }
872
873 /// Returns the last key-value pair in the map.
874 /// The key in this pair is the maximum key in the map.
875 ///
876 /// # Examples
877 ///
878 /// ```
879 /// use std::collections::BTreeMap;
880 ///
881 /// let mut map = BTreeMap::new();
882 /// map.insert(1, "b");
883 /// map.insert(2, "a");
884 /// assert_eq!(map.last_key_value(), Some((&2, &"a")));
885 /// ```
886 #[stable(feature = "map_first_last", since = "1.66.0")]
887 pub fn last_key_value(&self) -> Option<(&K, &V)>
888 where
889 K: Ord,
890 {
891 let root_node = self.root.as_ref()?.reborrow();
892 root_node.last_leaf_edge().left_kv().ok().map(Handle::into_kv)
893 }
894
895 /// Returns the last entry in the map for in-place manipulation.
896 /// The key of this entry is the maximum key in the map.
897 ///
898 /// # Examples
899 ///
900 /// ```
901 /// use std::collections::BTreeMap;
902 ///
903 /// let mut map = BTreeMap::new();
904 /// map.insert(1, "a");
905 /// map.insert(2, "b");
906 /// if let Some(mut entry) = map.last_entry() {
907 /// if *entry.key() > 0 {
908 /// entry.insert("last");
909 /// }
910 /// }
911 /// assert_eq!(*map.get(&1).unwrap(), "a");
912 /// assert_eq!(*map.get(&2).unwrap(), "last");
913 /// ```
914 #[stable(feature = "map_first_last", since = "1.66.0")]
915 pub fn last_entry(&mut self) -> Option<OccupiedEntry<'_, K, V, A>>
916 where
917 K: Ord,
918 {
919 let (map, dormant_map) = DormantMutRef::new(self);
920 let root_node = map.root.as_mut()?.borrow_mut();
921 let kv = root_node.last_leaf_edge().left_kv().ok()?;
922 Some(OccupiedEntry {
923 handle: kv.forget_node_type(),
924 dormant_map,
925 alloc: (*map.alloc).clone(),
926 _marker: PhantomData,
927 })
928 }
929
930 /// Removes and returns the last element in the map.
931 /// The key of this element is the maximum key that was in the map.
932 ///
933 /// # Examples
934 ///
935 /// Draining elements in descending order, while keeping a usable map each iteration.
936 ///
937 /// ```
938 /// use std::collections::BTreeMap;
939 ///
940 /// let mut map = BTreeMap::new();
941 /// map.insert(1, "a");
942 /// map.insert(2, "b");
943 /// while let Some((key, _val)) = map.pop_last() {
944 /// assert!(map.iter().all(|(k, _v)| *k < key));
945 /// }
946 /// assert!(map.is_empty());
947 /// ```
948 #[stable(feature = "map_first_last", since = "1.66.0")]
949 pub fn pop_last(&mut self) -> Option<(K, V)>
950 where
951 K: Ord,
952 {
953 self.last_entry().map(|entry| entry.remove_entry())
954 }
955
956 /// Returns `true` if the map contains a value for the specified key.
957 ///
958 /// The key may be any borrowed form of the map's key type, but the ordering
959 /// on the borrowed form *must* match the ordering on the key type.
960 ///
961 /// # Examples
962 ///
963 /// ```
964 /// use std::collections::BTreeMap;
965 ///
966 /// let mut map = BTreeMap::new();
967 /// map.insert(1, "a");
968 /// assert_eq!(map.contains_key(&1), true);
969 /// assert_eq!(map.contains_key(&2), false);
970 /// ```
971 #[stable(feature = "rust1", since = "1.0.0")]
972 #[cfg_attr(not(test), rustc_diagnostic_item = "btreemap_contains_key")]
973 pub fn contains_key<Q: ?Sized>(&self, key: &Q) -> bool
974 where
975 K: Borrow<Q> + Ord,
976 Q: Ord,
977 {
978 self.get(key).is_some()
979 }
980
981 /// Returns a mutable reference to the value corresponding to the key.
982 ///
983 /// The key may be any borrowed form of the map's key type, but the ordering
984 /// on the borrowed form *must* match the ordering on the key type.
985 ///
986 /// # Examples
987 ///
988 /// ```
989 /// use std::collections::BTreeMap;
990 ///
991 /// let mut map = BTreeMap::new();
992 /// map.insert(1, "a");
993 /// if let Some(x) = map.get_mut(&1) {
994 /// *x = "b";
995 /// }
996 /// assert_eq!(map[&1], "b");
997 /// ```
998 // See `get` for implementation notes, this is basically a copy-paste with mut's added
999 #[stable(feature = "rust1", since = "1.0.0")]
1000 pub fn get_mut<Q: ?Sized>(&mut self, key: &Q) -> Option<&mut V>
1001 where
1002 K: Borrow<Q> + Ord,
1003 Q: Ord,
1004 {
1005 let root_node = self.root.as_mut()?.borrow_mut();
1006 match root_node.search_tree(key) {
1007 Found(handle) => Some(handle.into_val_mut()),
1008 GoDown(_) => None,
1009 }
1010 }
1011
1012 /// Inserts a key-value pair into the map.
1013 ///
1014 /// If the map did not have this key present, `None` is returned.
1015 ///
1016 /// If the map did have this key present, the value is updated, and the old
1017 /// value is returned. The key is not updated, though; this matters for
1018 /// types that can be `==` without being identical. See the [module-level
1019 /// documentation] for more.
1020 ///
1021 /// [module-level documentation]: index.html#insert-and-complex-keys
1022 ///
1023 /// # Examples
1024 ///
1025 /// ```
1026 /// use std::collections::BTreeMap;
1027 ///
1028 /// let mut map = BTreeMap::new();
1029 /// assert_eq!(map.insert(37, "a"), None);
1030 /// assert_eq!(map.is_empty(), false);
1031 ///
1032 /// map.insert(37, "b");
1033 /// assert_eq!(map.insert(37, "c"), Some("b"));
1034 /// assert_eq!(map[&37], "c");
1035 /// ```
1036 #[stable(feature = "rust1", since = "1.0.0")]
1037 #[rustc_confusables("push", "put", "set")]
1038 #[cfg_attr(not(test), rustc_diagnostic_item = "btreemap_insert")]
1039 pub fn insert(&mut self, key: K, value: V) -> Option<V>
1040 where
1041 K: Ord,
1042 {
1043 match self.entry(key) {
1044 Occupied(mut entry) => Some(entry.insert(value)),
1045 Vacant(entry) => {
1046 entry.insert(value);
1047 None
1048 }
1049 }
1050 }
1051
1052 /// Tries to insert a key-value pair into the map, and returns
1053 /// a mutable reference to the value in the entry.
1054 ///
1055 /// If the map already had this key present, nothing is updated, and
1056 /// an error containing the occupied entry and the value is returned.
1057 ///
1058 /// # Examples
1059 ///
1060 /// ```
1061 /// #![feature(map_try_insert)]
1062 ///
1063 /// use std::collections::BTreeMap;
1064 ///
1065 /// let mut map = BTreeMap::new();
1066 /// assert_eq!(map.try_insert(37, "a").unwrap(), &"a");
1067 ///
1068 /// let err = map.try_insert(37, "b").unwrap_err();
1069 /// assert_eq!(err.entry.key(), &37);
1070 /// assert_eq!(err.entry.get(), &"a");
1071 /// assert_eq!(err.value, "b");
1072 /// ```
1073 #[unstable(feature = "map_try_insert", issue = "82766")]
1074 pub fn try_insert(&mut self, key: K, value: V) -> Result<&mut V, OccupiedError<'_, K, V, A>>
1075 where
1076 K: Ord,
1077 {
1078 match self.entry(key) {
1079 Occupied(entry) => Err(OccupiedError { entry, value }),
1080 Vacant(entry) => Ok(entry.insert(value)),
1081 }
1082 }
1083
1084 /// Removes a key from the map, returning the value at the key if the key
1085 /// was previously in the map.
1086 ///
1087 /// The key may be any borrowed form of the map's key type, but the ordering
1088 /// on the borrowed form *must* match the ordering on the key type.
1089 ///
1090 /// # Examples
1091 ///
1092 /// ```
1093 /// use std::collections::BTreeMap;
1094 ///
1095 /// let mut map = BTreeMap::new();
1096 /// map.insert(1, "a");
1097 /// assert_eq!(map.remove(&1), Some("a"));
1098 /// assert_eq!(map.remove(&1), None);
1099 /// ```
1100 #[stable(feature = "rust1", since = "1.0.0")]
1101 #[rustc_confusables("delete", "take")]
1102 pub fn remove<Q: ?Sized>(&mut self, key: &Q) -> Option<V>
1103 where
1104 K: Borrow<Q> + Ord,
1105 Q: Ord,
1106 {
1107 self.remove_entry(key).map(|(_, v)| v)
1108 }
1109
1110 /// Removes a key from the map, returning the stored key and value if the key
1111 /// was previously in the map.
1112 ///
1113 /// The key may be any borrowed form of the map's key type, but the ordering
1114 /// on the borrowed form *must* match the ordering on the key type.
1115 ///
1116 /// # Examples
1117 ///
1118 /// ```
1119 /// use std::collections::BTreeMap;
1120 ///
1121 /// let mut map = BTreeMap::new();
1122 /// map.insert(1, "a");
1123 /// assert_eq!(map.remove_entry(&1), Some((1, "a")));
1124 /// assert_eq!(map.remove_entry(&1), None);
1125 /// ```
1126 #[stable(feature = "btreemap_remove_entry", since = "1.45.0")]
1127 pub fn remove_entry<Q: ?Sized>(&mut self, key: &Q) -> Option<(K, V)>
1128 where
1129 K: Borrow<Q> + Ord,
1130 Q: Ord,
1131 {
1132 let (map, dormant_map) = DormantMutRef::new(self);
1133 let root_node = map.root.as_mut()?.borrow_mut();
1134 match root_node.search_tree(key) {
1135 Found(handle) => Some(
1136 OccupiedEntry {
1137 handle,
1138 dormant_map,
1139 alloc: (*map.alloc).clone(),
1140 _marker: PhantomData,
1141 }
1142 .remove_entry(),
1143 ),
1144 GoDown(_) => None,
1145 }
1146 }
1147
1148 /// Retains only the elements specified by the predicate.
1149 ///
1150 /// In other words, remove all pairs `(k, v)` for which `f(&k, &mut v)` returns `false`.
1151 /// The elements are visited in ascending key order.
1152 ///
1153 /// # Examples
1154 ///
1155 /// ```
1156 /// use std::collections::BTreeMap;
1157 ///
1158 /// let mut map: BTreeMap<i32, i32> = (0..8).map(|x| (x, x*10)).collect();
1159 /// // Keep only the elements with even-numbered keys.
1160 /// map.retain(|&k, _| k % 2 == 0);
1161 /// assert!(map.into_iter().eq(vec![(0, 0), (2, 20), (4, 40), (6, 60)]));
1162 /// ```
1163 #[inline]
1164 #[stable(feature = "btree_retain", since = "1.53.0")]
1165 pub fn retain<F>(&mut self, mut f: F)
1166 where
1167 K: Ord,
1168 F: FnMut(&K, &mut V) -> bool,
1169 {
1170 self.extract_if(.., |k, v| !f(k, v)).for_each(drop);
1171 }
1172
1173 /// Moves all elements from `other` into `self`, leaving `other` empty.
1174 ///
1175 /// If a key from `other` is already present in `self`, the respective
1176 /// value from `self` will be overwritten with the respective value from `other`.
1177 ///
1178 /// # Examples
1179 ///
1180 /// ```
1181 /// use std::collections::BTreeMap;
1182 ///
1183 /// let mut a = BTreeMap::new();
1184 /// a.insert(1, "a");
1185 /// a.insert(2, "b");
1186 /// a.insert(3, "c"); // Note: Key (3) also present in b.
1187 ///
1188 /// let mut b = BTreeMap::new();
1189 /// b.insert(3, "d"); // Note: Key (3) also present in a.
1190 /// b.insert(4, "e");
1191 /// b.insert(5, "f");
1192 ///
1193 /// a.append(&mut b);
1194 ///
1195 /// assert_eq!(a.len(), 5);
1196 /// assert_eq!(b.len(), 0);
1197 ///
1198 /// assert_eq!(a[&1], "a");
1199 /// assert_eq!(a[&2], "b");
1200 /// assert_eq!(a[&3], "d"); // Note: "c" has been overwritten.
1201 /// assert_eq!(a[&4], "e");
1202 /// assert_eq!(a[&5], "f");
1203 /// ```
1204 #[stable(feature = "btree_append", since = "1.11.0")]
1205 pub fn append(&mut self, other: &mut Self)
1206 where
1207 K: Ord,
1208 A: Clone,
1209 {
1210 // Do we have to append anything at all?
1211 if other.is_empty() {
1212 return;
1213 }
1214
1215 // We can just swap `self` and `other` if `self` is empty.
1216 if self.is_empty() {
1217 mem::swap(self, other);
1218 return;
1219 }
1220
1221 let self_iter = mem::replace(self, Self::new_in((*self.alloc).clone())).into_iter();
1222 let other_iter = mem::replace(other, Self::new_in((*self.alloc).clone())).into_iter();
1223 let root = self.root.get_or_insert_with(|| Root::new((*self.alloc).clone()));
1224 root.append_from_sorted_iters(
1225 self_iter,
1226 other_iter,
1227 &mut self.length,
1228 (*self.alloc).clone(),
1229 )
1230 }
1231
1232 /// Constructs a double-ended iterator over a sub-range of elements in the map.
1233 /// The simplest way is to use the range syntax `min..max`, thus `range(min..max)` will
1234 /// yield elements from min (inclusive) to max (exclusive).
1235 /// The range may also be entered as `(Bound<T>, Bound<T>)`, so for example
1236 /// `range((Excluded(4), Included(10)))` will yield a left-exclusive, right-inclusive
1237 /// range from 4 to 10.
1238 ///
1239 /// # Panics
1240 ///
1241 /// Panics if range `start > end`.
1242 /// Panics if range `start == end` and both bounds are `Excluded`.
1243 ///
1244 /// # Examples
1245 ///
1246 /// ```
1247 /// use std::collections::BTreeMap;
1248 /// use std::ops::Bound::Included;
1249 ///
1250 /// let mut map = BTreeMap::new();
1251 /// map.insert(3, "a");
1252 /// map.insert(5, "b");
1253 /// map.insert(8, "c");
1254 /// for (&key, &value) in map.range((Included(&4), Included(&8))) {
1255 /// println!("{key}: {value}");
1256 /// }
1257 /// assert_eq!(Some((&5, &"b")), map.range(4..).next());
1258 /// ```
1259 #[stable(feature = "btree_range", since = "1.17.0")]
1260 pub fn range<T: ?Sized, R>(&self, range: R) -> Range<'_, K, V>
1261 where
1262 T: Ord,
1263 K: Borrow<T> + Ord,
1264 R: RangeBounds<T>,
1265 {
1266 if let Some(root) = &self.root {
1267 Range { inner: root.reborrow().range_search(range) }
1268 } else {
1269 Range { inner: LeafRange::none() }
1270 }
1271 }
1272
1273 /// Constructs a mutable double-ended iterator over a sub-range of elements in the map.
1274 /// The simplest way is to use the range syntax `min..max`, thus `range(min..max)` will
1275 /// yield elements from min (inclusive) to max (exclusive).
1276 /// The range may also be entered as `(Bound<T>, Bound<T>)`, so for example
1277 /// `range((Excluded(4), Included(10)))` will yield a left-exclusive, right-inclusive
1278 /// range from 4 to 10.
1279 ///
1280 /// # Panics
1281 ///
1282 /// Panics if range `start > end`.
1283 /// Panics if range `start == end` and both bounds are `Excluded`.
1284 ///
1285 /// # Examples
1286 ///
1287 /// ```
1288 /// use std::collections::BTreeMap;
1289 ///
1290 /// let mut map: BTreeMap<&str, i32> =
1291 /// [("Alice", 0), ("Bob", 0), ("Carol", 0), ("Cheryl", 0)].into();
1292 /// for (_, balance) in map.range_mut("B".."Cheryl") {
1293 /// *balance += 100;
1294 /// }
1295 /// for (name, balance) in &map {
1296 /// println!("{name} => {balance}");
1297 /// }
1298 /// ```
1299 #[stable(feature = "btree_range", since = "1.17.0")]
1300 pub fn range_mut<T: ?Sized, R>(&mut self, range: R) -> RangeMut<'_, K, V>
1301 where
1302 T: Ord,
1303 K: Borrow<T> + Ord,
1304 R: RangeBounds<T>,
1305 {
1306 if let Some(root) = &mut self.root {
1307 RangeMut { inner: root.borrow_valmut().range_search(range), _marker: PhantomData }
1308 } else {
1309 RangeMut { inner: LeafRange::none(), _marker: PhantomData }
1310 }
1311 }
1312
1313 /// Gets the given key's corresponding entry in the map for in-place manipulation.
1314 ///
1315 /// # Examples
1316 ///
1317 /// ```
1318 /// use std::collections::BTreeMap;
1319 ///
1320 /// let mut count: BTreeMap<&str, usize> = BTreeMap::new();
1321 ///
1322 /// // count the number of occurrences of letters in the vec
1323 /// for x in ["a", "b", "a", "c", "a", "b"] {
1324 /// count.entry(x).and_modify(|curr| *curr += 1).or_insert(1);
1325 /// }
1326 ///
1327 /// assert_eq!(count["a"], 3);
1328 /// assert_eq!(count["b"], 2);
1329 /// assert_eq!(count["c"], 1);
1330 /// ```
1331 #[stable(feature = "rust1", since = "1.0.0")]
1332 pub fn entry(&mut self, key: K) -> Entry<'_, K, V, A>
1333 where
1334 K: Ord,
1335 {
1336 let (map, dormant_map) = DormantMutRef::new(self);
1337 match map.root {
1338 None => Vacant(VacantEntry {
1339 key,
1340 handle: None,
1341 dormant_map,
1342 alloc: (*map.alloc).clone(),
1343 _marker: PhantomData,
1344 }),
1345 Some(ref mut root) => match root.borrow_mut().search_tree(&key) {
1346 Found(handle) => Occupied(OccupiedEntry {
1347 handle,
1348 dormant_map,
1349 alloc: (*map.alloc).clone(),
1350 _marker: PhantomData,
1351 }),
1352 GoDown(handle) => Vacant(VacantEntry {
1353 key,
1354 handle: Some(handle),
1355 dormant_map,
1356 alloc: (*map.alloc).clone(),
1357 _marker: PhantomData,
1358 }),
1359 },
1360 }
1361 }
1362
1363 /// Splits the collection into two at the given key. Returns everything after the given key,
1364 /// including the key.
1365 ///
1366 /// # Examples
1367 ///
1368 /// ```
1369 /// use std::collections::BTreeMap;
1370 ///
1371 /// let mut a = BTreeMap::new();
1372 /// a.insert(1, "a");
1373 /// a.insert(2, "b");
1374 /// a.insert(3, "c");
1375 /// a.insert(17, "d");
1376 /// a.insert(41, "e");
1377 ///
1378 /// let b = a.split_off(&3);
1379 ///
1380 /// assert_eq!(a.len(), 2);
1381 /// assert_eq!(b.len(), 3);
1382 ///
1383 /// assert_eq!(a[&1], "a");
1384 /// assert_eq!(a[&2], "b");
1385 ///
1386 /// assert_eq!(b[&3], "c");
1387 /// assert_eq!(b[&17], "d");
1388 /// assert_eq!(b[&41], "e");
1389 /// ```
1390 #[stable(feature = "btree_split_off", since = "1.11.0")]
1391 pub fn split_off<Q: ?Sized + Ord>(&mut self, key: &Q) -> Self
1392 where
1393 K: Borrow<Q> + Ord,
1394 A: Clone,
1395 {
1396 if self.is_empty() {
1397 return Self::new_in((*self.alloc).clone());
1398 }
1399
1400 let total_num = self.len();
1401 let left_root = self.root.as_mut().unwrap(); // unwrap succeeds because not empty
1402
1403 let right_root = left_root.split_off(key, (*self.alloc).clone());
1404
1405 let (new_left_len, right_len) = Root::calc_split_length(total_num, &left_root, &right_root);
1406 self.length = new_left_len;
1407
1408 BTreeMap {
1409 root: Some(right_root),
1410 length: right_len,
1411 alloc: self.alloc.clone(),
1412 _marker: PhantomData,
1413 }
1414 }
1415
1416 /// Creates an iterator that visits elements (key-value pairs) in the specified range in
1417 /// ascending key order and uses a closure to determine if an element
1418 /// should be removed.
1419 ///
1420 /// If the closure returns `true`, the element is removed from the map and
1421 /// yielded. If the closure returns `false`, or panics, the element remains
1422 /// in the map and will not be yielded.
1423 ///
1424 /// The iterator also lets you mutate the value of each element in the
1425 /// closure, regardless of whether you choose to keep or remove it.
1426 ///
1427 /// If the returned `ExtractIf` is not exhausted, e.g. because it is dropped without iterating
1428 /// or the iteration short-circuits, then the remaining elements will be retained.
1429 /// Use [`retain`] with a negated predicate if you do not need the returned iterator.
1430 ///
1431 /// [`retain`]: BTreeMap::retain
1432 ///
1433 /// # Examples
1434 ///
1435 /// ```
1436 /// #![feature(btree_extract_if)]
1437 /// use std::collections::BTreeMap;
1438 ///
1439 /// // Splitting a map into even and odd keys, reusing the original map:
1440 /// let mut map: BTreeMap<i32, i32> = (0..8).map(|x| (x, x)).collect();
1441 /// let evens: BTreeMap<_, _> = map.extract_if(.., |k, _v| k % 2 == 0).collect();
1442 /// let odds = map;
1443 /// assert_eq!(evens.keys().copied().collect::<Vec<_>>(), [0, 2, 4, 6]);
1444 /// assert_eq!(odds.keys().copied().collect::<Vec<_>>(), [1, 3, 5, 7]);
1445 ///
1446 /// // Splitting a map into low and high halves, reusing the original map:
1447 /// let mut map: BTreeMap<i32, i32> = (0..8).map(|x| (x, x)).collect();
1448 /// let low: BTreeMap<_, _> = map.extract_if(0..4, |_k, _v| true).collect();
1449 /// let high = map;
1450 /// assert_eq!(low.keys().copied().collect::<Vec<_>>(), [0, 1, 2, 3]);
1451 /// assert_eq!(high.keys().copied().collect::<Vec<_>>(), [4, 5, 6, 7]);
1452 /// ```
1453 #[unstable(feature = "btree_extract_if", issue = "70530")]
1454 pub fn extract_if<F, R>(&mut self, range: R, pred: F) -> ExtractIf<'_, K, V, R, F, A>
1455 where
1456 K: Ord,
1457 R: RangeBounds<K>,
1458 F: FnMut(&K, &mut V) -> bool,
1459 {
1460 let (inner, alloc) = self.extract_if_inner(range);
1461 ExtractIf { pred, inner, alloc }
1462 }
1463
1464 pub(super) fn extract_if_inner<R>(&mut self, range: R) -> (ExtractIfInner<'_, K, V, R>, A)
1465 where
1466 K: Ord,
1467 R: RangeBounds<K>,
1468 {
1469 if let Some(root) = self.root.as_mut() {
1470 let (root, dormant_root) = DormantMutRef::new(root);
1471 let first = root.borrow_mut().lower_bound(SearchBound::from_range(range.start_bound()));
1472 (
1473 ExtractIfInner {
1474 length: &mut self.length,
1475 dormant_root: Some(dormant_root),
1476 cur_leaf_edge: Some(first),
1477 range,
1478 },
1479 (*self.alloc).clone(),
1480 )
1481 } else {
1482 (
1483 ExtractIfInner {
1484 length: &mut self.length,
1485 dormant_root: None,
1486 cur_leaf_edge: None,
1487 range,
1488 },
1489 (*self.alloc).clone(),
1490 )
1491 }
1492 }
1493
1494 /// Creates a consuming iterator visiting all the keys, in sorted order.
1495 /// The map cannot be used after calling this.
1496 /// The iterator element type is `K`.
1497 ///
1498 /// # Examples
1499 ///
1500 /// ```
1501 /// use std::collections::BTreeMap;
1502 ///
1503 /// let mut a = BTreeMap::new();
1504 /// a.insert(2, "b");
1505 /// a.insert(1, "a");
1506 ///
1507 /// let keys: Vec<i32> = a.into_keys().collect();
1508 /// assert_eq!(keys, [1, 2]);
1509 /// ```
1510 #[inline]
1511 #[stable(feature = "map_into_keys_values", since = "1.54.0")]
1512 pub fn into_keys(self) -> IntoKeys<K, V, A> {
1513 IntoKeys { inner: self.into_iter() }
1514 }
1515
1516 /// Creates a consuming iterator visiting all the values, in order by key.
1517 /// The map cannot be used after calling this.
1518 /// The iterator element type is `V`.
1519 ///
1520 /// # Examples
1521 ///
1522 /// ```
1523 /// use std::collections::BTreeMap;
1524 ///
1525 /// let mut a = BTreeMap::new();
1526 /// a.insert(1, "hello");
1527 /// a.insert(2, "goodbye");
1528 ///
1529 /// let values: Vec<&str> = a.into_values().collect();
1530 /// assert_eq!(values, ["hello", "goodbye"]);
1531 /// ```
1532 #[inline]
1533 #[stable(feature = "map_into_keys_values", since = "1.54.0")]
1534 pub fn into_values(self) -> IntoValues<K, V, A> {
1535 IntoValues { inner: self.into_iter() }
1536 }
1537
1538 /// Makes a `BTreeMap` from a sorted iterator.
1539 pub(crate) fn bulk_build_from_sorted_iter<I>(iter: I, alloc: A) -> Self
1540 where
1541 K: Ord,
1542 I: IntoIterator<Item = (K, V)>,
1543 {
1544 let mut root = Root::new(alloc.clone());
1545 let mut length = 0;
1546 root.bulk_push(DedupSortedIter::new(iter.into_iter()), &mut length, alloc.clone());
1547 BTreeMap { root: Some(root), length, alloc: ManuallyDrop::new(alloc), _marker: PhantomData }
1548 }
1549}
1550
1551#[stable(feature = "rust1", since = "1.0.0")]
1552impl<'a, K, V, A: Allocator + Clone> IntoIterator for &'a BTreeMap<K, V, A> {
1553 type Item = (&'a K, &'a V);
1554 type IntoIter = Iter<'a, K, V>;
1555
1556 fn into_iter(self) -> Iter<'a, K, V> {
1557 self.iter()
1558 }
1559}
1560
1561#[stable(feature = "rust1", since = "1.0.0")]
1562impl<'a, K: 'a, V: 'a> Iterator for Iter<'a, K, V> {
1563 type Item = (&'a K, &'a V);
1564
1565 fn next(&mut self) -> Option<(&'a K, &'a V)> {
1566 if self.length == 0 {
1567 None
1568 } else {
1569 self.length -= 1;
1570 Some(unsafe { self.range.next_unchecked() })
1571 }
1572 }
1573
1574 fn size_hint(&self) -> (usize, Option<usize>) {
1575 (self.length, Some(self.length))
1576 }
1577
1578 fn last(mut self) -> Option<(&'a K, &'a V)> {
1579 self.next_back()
1580 }
1581
1582 fn min(mut self) -> Option<(&'a K, &'a V)>
1583 where
1584 (&'a K, &'a V): Ord,
1585 {
1586 self.next()
1587 }
1588
1589 fn max(mut self) -> Option<(&'a K, &'a V)>
1590 where
1591 (&'a K, &'a V): Ord,
1592 {
1593 self.next_back()
1594 }
1595}
1596
1597#[stable(feature = "fused", since = "1.26.0")]
1598impl<K, V> FusedIterator for Iter<'_, K, V> {}
1599
1600#[stable(feature = "rust1", since = "1.0.0")]
1601impl<'a, K: 'a, V: 'a> DoubleEndedIterator for Iter<'a, K, V> {
1602 fn next_back(&mut self) -> Option<(&'a K, &'a V)> {
1603 if self.length == 0 {
1604 None
1605 } else {
1606 self.length -= 1;
1607 Some(unsafe { self.range.next_back_unchecked() })
1608 }
1609 }
1610}
1611
1612#[stable(feature = "rust1", since = "1.0.0")]
1613impl<K, V> ExactSizeIterator for Iter<'_, K, V> {
1614 fn len(&self) -> usize {
1615 self.length
1616 }
1617}
1618
1619#[stable(feature = "rust1", since = "1.0.0")]
1620impl<K, V> Clone for Iter<'_, K, V> {
1621 fn clone(&self) -> Self {
1622 Iter { range: self.range.clone(), length: self.length }
1623 }
1624}
1625
1626#[stable(feature = "rust1", since = "1.0.0")]
1627impl<'a, K, V, A: Allocator + Clone> IntoIterator for &'a mut BTreeMap<K, V, A> {
1628 type Item = (&'a K, &'a mut V);
1629 type IntoIter = IterMut<'a, K, V>;
1630
1631 fn into_iter(self) -> IterMut<'a, K, V> {
1632 self.iter_mut()
1633 }
1634}
1635
1636#[stable(feature = "rust1", since = "1.0.0")]
1637impl<'a, K, V> Iterator for IterMut<'a, K, V> {
1638 type Item = (&'a K, &'a mut V);
1639
1640 fn next(&mut self) -> Option<(&'a K, &'a mut V)> {
1641 if self.length == 0 {
1642 None
1643 } else {
1644 self.length -= 1;
1645 Some(unsafe { self.range.next_unchecked() })
1646 }
1647 }
1648
1649 fn size_hint(&self) -> (usize, Option<usize>) {
1650 (self.length, Some(self.length))
1651 }
1652
1653 fn last(mut self) -> Option<(&'a K, &'a mut V)> {
1654 self.next_back()
1655 }
1656
1657 fn min(mut self) -> Option<(&'a K, &'a mut V)>
1658 where
1659 (&'a K, &'a mut V): Ord,
1660 {
1661 self.next()
1662 }
1663
1664 fn max(mut self) -> Option<(&'a K, &'a mut V)>
1665 where
1666 (&'a K, &'a mut V): Ord,
1667 {
1668 self.next_back()
1669 }
1670}
1671
1672#[stable(feature = "rust1", since = "1.0.0")]
1673impl<'a, K, V> DoubleEndedIterator for IterMut<'a, K, V> {
1674 fn next_back(&mut self) -> Option<(&'a K, &'a mut V)> {
1675 if self.length == 0 {
1676 None
1677 } else {
1678 self.length -= 1;
1679 Some(unsafe { self.range.next_back_unchecked() })
1680 }
1681 }
1682}
1683
1684#[stable(feature = "rust1", since = "1.0.0")]
1685impl<K, V> ExactSizeIterator for IterMut<'_, K, V> {
1686 fn len(&self) -> usize {
1687 self.length
1688 }
1689}
1690
1691#[stable(feature = "fused", since = "1.26.0")]
1692impl<K, V> FusedIterator for IterMut<'_, K, V> {}
1693
1694impl<'a, K, V> IterMut<'a, K, V> {
1695 /// Returns an iterator of references over the remaining items.
1696 #[inline]
1697 pub(super) fn iter(&self) -> Iter<'_, K, V> {
1698 Iter { range: self.range.reborrow(), length: self.length }
1699 }
1700}
1701
1702#[stable(feature = "rust1", since = "1.0.0")]
1703impl<K, V, A: Allocator + Clone> IntoIterator for BTreeMap<K, V, A> {
1704 type Item = (K, V);
1705 type IntoIter = IntoIter<K, V, A>;
1706
1707 /// Gets an owning iterator over the entries of the map, sorted by key.
1708 fn into_iter(self) -> IntoIter<K, V, A> {
1709 let mut me = ManuallyDrop::new(self);
1710 if let Some(root) = me.root.take() {
1711 let full_range = root.into_dying().full_range();
1712
1713 IntoIter {
1714 range: full_range,
1715 length: me.length,
1716 alloc: unsafe { ManuallyDrop::take(&mut me.alloc) },
1717 }
1718 } else {
1719 IntoIter {
1720 range: LazyLeafRange::none(),
1721 length: 0,
1722 alloc: unsafe { ManuallyDrop::take(&mut me.alloc) },
1723 }
1724 }
1725 }
1726}
1727
1728#[stable(feature = "btree_drop", since = "1.7.0")]
1729impl<K, V, A: Allocator + Clone> Drop for IntoIter<K, V, A> {
1730 fn drop(&mut self) {
1731 struct DropGuard<'a, K, V, A: Allocator + Clone>(&'a mut IntoIter<K, V, A>);
1732
1733 impl<'a, K, V, A: Allocator + Clone> Drop for DropGuard<'a, K, V, A> {
1734 fn drop(&mut self) {
1735 // Continue the same loop we perform below. This only runs when unwinding, so we
1736 // don't have to care about panics this time (they'll abort).
1737 while let Some(kv) = self.0.dying_next() {
1738 // SAFETY: we consume the dying handle immediately.
1739 unsafe { kv.drop_key_val() };
1740 }
1741 }
1742 }
1743
1744 while let Some(kv) = self.dying_next() {
1745 let guard = DropGuard(self);
1746 // SAFETY: we don't touch the tree before consuming the dying handle.
1747 unsafe { kv.drop_key_val() };
1748 mem::forget(guard);
1749 }
1750 }
1751}
1752
1753impl<K, V, A: Allocator + Clone> IntoIter<K, V, A> {
1754 /// Core of a `next` method returning a dying KV handle,
1755 /// invalidated by further calls to this function and some others.
1756 fn dying_next(
1757 &mut self,
1758 ) -> Option<Handle<NodeRef<marker::Dying, K, V, marker::LeafOrInternal>, marker::KV>> {
1759 if self.length == 0 {
1760 self.range.deallocating_end(self.alloc.clone());
1761 None
1762 } else {
1763 self.length -= 1;
1764 Some(unsafe { self.range.deallocating_next_unchecked(self.alloc.clone()) })
1765 }
1766 }
1767
1768 /// Core of a `next_back` method returning a dying KV handle,
1769 /// invalidated by further calls to this function and some others.
1770 fn dying_next_back(
1771 &mut self,
1772 ) -> Option<Handle<NodeRef<marker::Dying, K, V, marker::LeafOrInternal>, marker::KV>> {
1773 if self.length == 0 {
1774 self.range.deallocating_end(self.alloc.clone());
1775 None
1776 } else {
1777 self.length -= 1;
1778 Some(unsafe { self.range.deallocating_next_back_unchecked(self.alloc.clone()) })
1779 }
1780 }
1781}
1782
1783#[stable(feature = "rust1", since = "1.0.0")]
1784impl<K, V, A: Allocator + Clone> Iterator for IntoIter<K, V, A> {
1785 type Item = (K, V);
1786
1787 fn next(&mut self) -> Option<(K, V)> {
1788 // SAFETY: we consume the dying handle immediately.
1789 self.dying_next().map(unsafe { |kv| kv.into_key_val() })
1790 }
1791
1792 fn size_hint(&self) -> (usize, Option<usize>) {
1793 (self.length, Some(self.length))
1794 }
1795}
1796
1797#[stable(feature = "rust1", since = "1.0.0")]
1798impl<K, V, A: Allocator + Clone> DoubleEndedIterator for IntoIter<K, V, A> {
1799 fn next_back(&mut self) -> Option<(K, V)> {
1800 // SAFETY: we consume the dying handle immediately.
1801 self.dying_next_back().map(unsafe { |kv| kv.into_key_val() })
1802 }
1803}
1804
1805#[stable(feature = "rust1", since = "1.0.0")]
1806impl<K, V, A: Allocator + Clone> ExactSizeIterator for IntoIter<K, V, A> {
1807 fn len(&self) -> usize {
1808 self.length
1809 }
1810}
1811
1812#[stable(feature = "fused", since = "1.26.0")]
1813impl<K, V, A: Allocator + Clone> FusedIterator for IntoIter<K, V, A> {}
1814
1815#[stable(feature = "rust1", since = "1.0.0")]
1816impl<'a, K, V> Iterator for Keys<'a, K, V> {
1817 type Item = &'a K;
1818
1819 fn next(&mut self) -> Option<&'a K> {
1820 self.inner.next().map(|(k, _)| k)
1821 }
1822
1823 fn size_hint(&self) -> (usize, Option<usize>) {
1824 self.inner.size_hint()
1825 }
1826
1827 fn last(mut self) -> Option<&'a K> {
1828 self.next_back()
1829 }
1830
1831 fn min(mut self) -> Option<&'a K>
1832 where
1833 &'a K: Ord,
1834 {
1835 self.next()
1836 }
1837
1838 fn max(mut self) -> Option<&'a K>
1839 where
1840 &'a K: Ord,
1841 {
1842 self.next_back()
1843 }
1844}
1845
1846#[stable(feature = "rust1", since = "1.0.0")]
1847impl<'a, K, V> DoubleEndedIterator for Keys<'a, K, V> {
1848 fn next_back(&mut self) -> Option<&'a K> {
1849 self.inner.next_back().map(|(k, _)| k)
1850 }
1851}
1852
1853#[stable(feature = "rust1", since = "1.0.0")]
1854impl<K, V> ExactSizeIterator for Keys<'_, K, V> {
1855 fn len(&self) -> usize {
1856 self.inner.len()
1857 }
1858}
1859
1860#[stable(feature = "fused", since = "1.26.0")]
1861impl<K, V> FusedIterator for Keys<'_, K, V> {}
1862
1863#[stable(feature = "rust1", since = "1.0.0")]
1864impl<K, V> Clone for Keys<'_, K, V> {
1865 fn clone(&self) -> Self {
1866 Keys { inner: self.inner.clone() }
1867 }
1868}
1869
1870#[stable(feature = "default_iters", since = "1.70.0")]
1871impl<K, V> Default for Keys<'_, K, V> {
1872 /// Creates an empty `btree_map::Keys`.
1873 ///
1874 /// ```
1875 /// # use std::collections::btree_map;
1876 /// let iter: btree_map::Keys<'_, u8, u8> = Default::default();
1877 /// assert_eq!(iter.len(), 0);
1878 /// ```
1879 fn default() -> Self {
1880 Keys { inner: Default::default() }
1881 }
1882}
1883
1884#[stable(feature = "rust1", since = "1.0.0")]
1885impl<'a, K, V> Iterator for Values<'a, K, V> {
1886 type Item = &'a V;
1887
1888 fn next(&mut self) -> Option<&'a V> {
1889 self.inner.next().map(|(_, v)| v)
1890 }
1891
1892 fn size_hint(&self) -> (usize, Option<usize>) {
1893 self.inner.size_hint()
1894 }
1895
1896 fn last(mut self) -> Option<&'a V> {
1897 self.next_back()
1898 }
1899}
1900
1901#[stable(feature = "rust1", since = "1.0.0")]
1902impl<'a, K, V> DoubleEndedIterator for Values<'a, K, V> {
1903 fn next_back(&mut self) -> Option<&'a V> {
1904 self.inner.next_back().map(|(_, v)| v)
1905 }
1906}
1907
1908#[stable(feature = "rust1", since = "1.0.0")]
1909impl<K, V> ExactSizeIterator for Values<'_, K, V> {
1910 fn len(&self) -> usize {
1911 self.inner.len()
1912 }
1913}
1914
1915#[stable(feature = "fused", since = "1.26.0")]
1916impl<K, V> FusedIterator for Values<'_, K, V> {}
1917
1918#[stable(feature = "rust1", since = "1.0.0")]
1919impl<K, V> Clone for Values<'_, K, V> {
1920 fn clone(&self) -> Self {
1921 Values { inner: self.inner.clone() }
1922 }
1923}
1924
1925#[stable(feature = "default_iters", since = "1.70.0")]
1926impl<K, V> Default for Values<'_, K, V> {
1927 /// Creates an empty `btree_map::Values`.
1928 ///
1929 /// ```
1930 /// # use std::collections::btree_map;
1931 /// let iter: btree_map::Values<'_, u8, u8> = Default::default();
1932 /// assert_eq!(iter.len(), 0);
1933 /// ```
1934 fn default() -> Self {
1935 Values { inner: Default::default() }
1936 }
1937}
1938
1939/// An iterator produced by calling `extract_if` on BTreeMap.
1940#[unstable(feature = "btree_extract_if", issue = "70530")]
1941#[must_use = "iterators are lazy and do nothing unless consumed"]
1942pub struct ExtractIf<
1943 'a,
1944 K,
1945 V,
1946 R,
1947 F,
1948 #[unstable(feature = "allocator_api", issue = "32838")] A: Allocator + Clone = Global,
1949> {
1950 pred: F,
1951 inner: ExtractIfInner<'a, K, V, R>,
1952 /// The BTreeMap will outlive this IntoIter so we don't care about drop order for `alloc`.
1953 alloc: A,
1954}
1955
1956/// Most of the implementation of ExtractIf are generic over the type
1957/// of the predicate, thus also serving for BTreeSet::ExtractIf.
1958pub(super) struct ExtractIfInner<'a, K, V, R> {
1959 /// Reference to the length field in the borrowed map, updated live.
1960 length: &'a mut usize,
1961 /// Buried reference to the root field in the borrowed map.
1962 /// Wrapped in `Option` to allow drop handler to `take` it.
1963 dormant_root: Option<DormantMutRef<'a, Root<K, V>>>,
1964 /// Contains a leaf edge preceding the next element to be returned, or the last leaf edge.
1965 /// Empty if the map has no root, if iteration went beyond the last leaf edge,
1966 /// or if a panic occurred in the predicate.
1967 cur_leaf_edge: Option<Handle<NodeRef<marker::Mut<'a>, K, V, marker::Leaf>, marker::Edge>>,
1968 /// Range over which iteration was requested. We don't need the left side, but we
1969 /// can't extract the right side without requiring K: Clone.
1970 range: R,
1971}
1972
1973#[unstable(feature = "btree_extract_if", issue = "70530")]
1974impl<K, V, R, F, A> fmt::Debug for ExtractIf<'_, K, V, R, F, A>
1975where
1976 K: fmt::Debug,
1977 V: fmt::Debug,
1978 A: Allocator + Clone,
1979{
1980 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1981 f.debug_struct("ExtractIf").field("peek", &self.inner.peek()).finish_non_exhaustive()
1982 }
1983}
1984
1985#[unstable(feature = "btree_extract_if", issue = "70530")]
1986impl<K, V, R, F, A: Allocator + Clone> Iterator for ExtractIf<'_, K, V, R, F, A>
1987where
1988 K: PartialOrd,
1989 R: RangeBounds<K>,
1990 F: FnMut(&K, &mut V) -> bool,
1991{
1992 type Item = (K, V);
1993
1994 fn next(&mut self) -> Option<(K, V)> {
1995 self.inner.next(&mut self.pred, self.alloc.clone())
1996 }
1997
1998 fn size_hint(&self) -> (usize, Option<usize>) {
1999 self.inner.size_hint()
2000 }
2001}
2002
2003impl<'a, K, V, R> ExtractIfInner<'a, K, V, R> {
2004 /// Allow Debug implementations to predict the next element.
2005 pub(super) fn peek(&self) -> Option<(&K, &V)> {
2006 let edge = self.cur_leaf_edge.as_ref()?;
2007 edge.reborrow().next_kv().ok().map(Handle::into_kv)
2008 }
2009
2010 /// Implementation of a typical `ExtractIf::next` method, given the predicate.
2011 pub(super) fn next<F, A: Allocator + Clone>(&mut self, pred: &mut F, alloc: A) -> Option<(K, V)>
2012 where
2013 K: PartialOrd,
2014 R: RangeBounds<K>,
2015 F: FnMut(&K, &mut V) -> bool,
2016 {
2017 while let Ok(mut kv) = self.cur_leaf_edge.take()?.next_kv() {
2018 let (k, v) = kv.kv_mut();
2019
2020 // On creation, we navigated directly to the left bound, so we need only check the
2021 // right bound here to decide whether to stop.
2022 match self.range.end_bound() {
2023 Bound::Included(ref end) if (*k).le(end) => (),
2024 Bound::Excluded(ref end) if (*k).lt(end) => (),
2025 Bound::Unbounded => (),
2026 _ => return None,
2027 }
2028
2029 if pred(k, v) {
2030 *self.length -= 1;
2031 let (kv, pos) = kv.remove_kv_tracking(
2032 || {
2033 // SAFETY: we will touch the root in a way that will not
2034 // invalidate the position returned.
2035 let root = unsafe { self.dormant_root.take().unwrap().awaken() };
2036 root.pop_internal_level(alloc.clone());
2037 self.dormant_root = Some(DormantMutRef::new(root).1);
2038 },
2039 alloc.clone(),
2040 );
2041 self.cur_leaf_edge = Some(pos);
2042 return Some(kv);
2043 }
2044 self.cur_leaf_edge = Some(kv.next_leaf_edge());
2045 }
2046 None
2047 }
2048
2049 /// Implementation of a typical `ExtractIf::size_hint` method.
2050 pub(super) fn size_hint(&self) -> (usize, Option<usize>) {
2051 // In most of the btree iterators, `self.length` is the number of elements
2052 // yet to be visited. Here, it includes elements that were visited and that
2053 // the predicate decided not to drain. Making this upper bound more tight
2054 // during iteration would require an extra field.
2055 (0, Some(*self.length))
2056 }
2057}
2058
2059#[unstable(feature = "btree_extract_if", issue = "70530")]
2060impl<K, V, R, F> FusedIterator for ExtractIf<'_, K, V, R, F>
2061where
2062 K: PartialOrd,
2063 R: RangeBounds<K>,
2064 F: FnMut(&K, &mut V) -> bool,
2065{
2066}
2067
2068#[stable(feature = "btree_range", since = "1.17.0")]
2069impl<'a, K, V> Iterator for Range<'a, K, V> {
2070 type Item = (&'a K, &'a V);
2071
2072 fn next(&mut self) -> Option<(&'a K, &'a V)> {
2073 self.inner.next_checked()
2074 }
2075
2076 fn last(mut self) -> Option<(&'a K, &'a V)> {
2077 self.next_back()
2078 }
2079
2080 fn min(mut self) -> Option<(&'a K, &'a V)>
2081 where
2082 (&'a K, &'a V): Ord,
2083 {
2084 self.next()
2085 }
2086
2087 fn max(mut self) -> Option<(&'a K, &'a V)>
2088 where
2089 (&'a K, &'a V): Ord,
2090 {
2091 self.next_back()
2092 }
2093}
2094
2095#[stable(feature = "default_iters", since = "1.70.0")]
2096impl<K, V> Default for Range<'_, K, V> {
2097 /// Creates an empty `btree_map::Range`.
2098 ///
2099 /// ```
2100 /// # use std::collections::btree_map;
2101 /// let iter: btree_map::Range<'_, u8, u8> = Default::default();
2102 /// assert_eq!(iter.count(), 0);
2103 /// ```
2104 fn default() -> Self {
2105 Range { inner: Default::default() }
2106 }
2107}
2108
2109#[stable(feature = "default_iters_sequel", since = "1.82.0")]
2110impl<K, V> Default for RangeMut<'_, K, V> {
2111 /// Creates an empty `btree_map::RangeMut`.
2112 ///
2113 /// ```
2114 /// # use std::collections::btree_map;
2115 /// let iter: btree_map::RangeMut<'_, u8, u8> = Default::default();
2116 /// assert_eq!(iter.count(), 0);
2117 /// ```
2118 fn default() -> Self {
2119 RangeMut { inner: Default::default(), _marker: PhantomData }
2120 }
2121}
2122
2123#[stable(feature = "map_values_mut", since = "1.10.0")]
2124impl<'a, K, V> Iterator for ValuesMut<'a, K, V> {
2125 type Item = &'a mut V;
2126
2127 fn next(&mut self) -> Option<&'a mut V> {
2128 self.inner.next().map(|(_, v)| v)
2129 }
2130
2131 fn size_hint(&self) -> (usize, Option<usize>) {
2132 self.inner.size_hint()
2133 }
2134
2135 fn last(mut self) -> Option<&'a mut V> {
2136 self.next_back()
2137 }
2138}
2139
2140#[stable(feature = "map_values_mut", since = "1.10.0")]
2141impl<'a, K, V> DoubleEndedIterator for ValuesMut<'a, K, V> {
2142 fn next_back(&mut self) -> Option<&'a mut V> {
2143 self.inner.next_back().map(|(_, v)| v)
2144 }
2145}
2146
2147#[stable(feature = "map_values_mut", since = "1.10.0")]
2148impl<K, V> ExactSizeIterator for ValuesMut<'_, K, V> {
2149 fn len(&self) -> usize {
2150 self.inner.len()
2151 }
2152}
2153
2154#[stable(feature = "fused", since = "1.26.0")]
2155impl<K, V> FusedIterator for ValuesMut<'_, K, V> {}
2156
2157#[stable(feature = "default_iters_sequel", since = "1.82.0")]
2158impl<K, V> Default for ValuesMut<'_, K, V> {
2159 /// Creates an empty `btree_map::ValuesMut`.
2160 ///
2161 /// ```
2162 /// # use std::collections::btree_map;
2163 /// let iter: btree_map::ValuesMut<'_, u8, u8> = Default::default();
2164 /// assert_eq!(iter.count(), 0);
2165 /// ```
2166 fn default() -> Self {
2167 ValuesMut { inner: Default::default() }
2168 }
2169}
2170
2171#[stable(feature = "map_into_keys_values", since = "1.54.0")]
2172impl<K, V, A: Allocator + Clone> Iterator for IntoKeys<K, V, A> {
2173 type Item = K;
2174
2175 fn next(&mut self) -> Option<K> {
2176 self.inner.next().map(|(k, _)| k)
2177 }
2178
2179 fn size_hint(&self) -> (usize, Option<usize>) {
2180 self.inner.size_hint()
2181 }
2182
2183 fn last(mut self) -> Option<K> {
2184 self.next_back()
2185 }
2186
2187 fn min(mut self) -> Option<K>
2188 where
2189 K: Ord,
2190 {
2191 self.next()
2192 }
2193
2194 fn max(mut self) -> Option<K>
2195 where
2196 K: Ord,
2197 {
2198 self.next_back()
2199 }
2200}
2201
2202#[stable(feature = "map_into_keys_values", since = "1.54.0")]
2203impl<K, V, A: Allocator + Clone> DoubleEndedIterator for IntoKeys<K, V, A> {
2204 fn next_back(&mut self) -> Option<K> {
2205 self.inner.next_back().map(|(k, _)| k)
2206 }
2207}
2208
2209#[stable(feature = "map_into_keys_values", since = "1.54.0")]
2210impl<K, V, A: Allocator + Clone> ExactSizeIterator for IntoKeys<K, V, A> {
2211 fn len(&self) -> usize {
2212 self.inner.len()
2213 }
2214}
2215
2216#[stable(feature = "map_into_keys_values", since = "1.54.0")]
2217impl<K, V, A: Allocator + Clone> FusedIterator for IntoKeys<K, V, A> {}
2218
2219#[stable(feature = "default_iters", since = "1.70.0")]
2220impl<K, V, A> Default for IntoKeys<K, V, A>
2221where
2222 A: Allocator + Default + Clone,
2223{
2224 /// Creates an empty `btree_map::IntoKeys`.
2225 ///
2226 /// ```
2227 /// # use std::collections::btree_map;
2228 /// let iter: btree_map::IntoKeys<u8, u8> = Default::default();
2229 /// assert_eq!(iter.len(), 0);
2230 /// ```
2231 fn default() -> Self {
2232 IntoKeys { inner: Default::default() }
2233 }
2234}
2235
2236#[stable(feature = "map_into_keys_values", since = "1.54.0")]
2237impl<K, V, A: Allocator + Clone> Iterator for IntoValues<K, V, A> {
2238 type Item = V;
2239
2240 fn next(&mut self) -> Option<V> {
2241 self.inner.next().map(|(_, v)| v)
2242 }
2243
2244 fn size_hint(&self) -> (usize, Option<usize>) {
2245 self.inner.size_hint()
2246 }
2247
2248 fn last(mut self) -> Option<V> {
2249 self.next_back()
2250 }
2251}
2252
2253#[stable(feature = "map_into_keys_values", since = "1.54.0")]
2254impl<K, V, A: Allocator + Clone> DoubleEndedIterator for IntoValues<K, V, A> {
2255 fn next_back(&mut self) -> Option<V> {
2256 self.inner.next_back().map(|(_, v)| v)
2257 }
2258}
2259
2260#[stable(feature = "map_into_keys_values", since = "1.54.0")]
2261impl<K, V, A: Allocator + Clone> ExactSizeIterator for IntoValues<K, V, A> {
2262 fn len(&self) -> usize {
2263 self.inner.len()
2264 }
2265}
2266
2267#[stable(feature = "map_into_keys_values", since = "1.54.0")]
2268impl<K, V, A: Allocator + Clone> FusedIterator for IntoValues<K, V, A> {}
2269
2270#[stable(feature = "default_iters", since = "1.70.0")]
2271impl<K, V, A> Default for IntoValues<K, V, A>
2272where
2273 A: Allocator + Default + Clone,
2274{
2275 /// Creates an empty `btree_map::IntoValues`.
2276 ///
2277 /// ```
2278 /// # use std::collections::btree_map;
2279 /// let iter: btree_map::IntoValues<u8, u8> = Default::default();
2280 /// assert_eq!(iter.len(), 0);
2281 /// ```
2282 fn default() -> Self {
2283 IntoValues { inner: Default::default() }
2284 }
2285}
2286
2287#[stable(feature = "btree_range", since = "1.17.0")]
2288impl<'a, K, V> DoubleEndedIterator for Range<'a, K, V> {
2289 fn next_back(&mut self) -> Option<(&'a K, &'a V)> {
2290 self.inner.next_back_checked()
2291 }
2292}
2293
2294#[stable(feature = "fused", since = "1.26.0")]
2295impl<K, V> FusedIterator for Range<'_, K, V> {}
2296
2297#[stable(feature = "btree_range", since = "1.17.0")]
2298impl<K, V> Clone for Range<'_, K, V> {
2299 fn clone(&self) -> Self {
2300 Range { inner: self.inner.clone() }
2301 }
2302}
2303
2304#[stable(feature = "btree_range", since = "1.17.0")]
2305impl<'a, K, V> Iterator for RangeMut<'a, K, V> {
2306 type Item = (&'a K, &'a mut V);
2307
2308 fn next(&mut self) -> Option<(&'a K, &'a mut V)> {
2309 self.inner.next_checked()
2310 }
2311
2312 fn last(mut self) -> Option<(&'a K, &'a mut V)> {
2313 self.next_back()
2314 }
2315
2316 fn min(mut self) -> Option<(&'a K, &'a mut V)>
2317 where
2318 (&'a K, &'a mut V): Ord,
2319 {
2320 self.next()
2321 }
2322
2323 fn max(mut self) -> Option<(&'a K, &'a mut V)>
2324 where
2325 (&'a K, &'a mut V): Ord,
2326 {
2327 self.next_back()
2328 }
2329}
2330
2331#[stable(feature = "btree_range", since = "1.17.0")]
2332impl<'a, K, V> DoubleEndedIterator for RangeMut<'a, K, V> {
2333 fn next_back(&mut self) -> Option<(&'a K, &'a mut V)> {
2334 self.inner.next_back_checked()
2335 }
2336}
2337
2338#[stable(feature = "fused", since = "1.26.0")]
2339impl<K, V> FusedIterator for RangeMut<'_, K, V> {}
2340
2341#[stable(feature = "rust1", since = "1.0.0")]
2342impl<K: Ord, V> FromIterator<(K, V)> for BTreeMap<K, V> {
2343 /// Constructs a `BTreeMap<K, V>` from an iterator of key-value pairs.
2344 ///
2345 /// If the iterator produces any pairs with equal keys,
2346 /// all but one of the corresponding values will be dropped.
2347 fn from_iter<T: IntoIterator<Item = (K, V)>>(iter: T) -> BTreeMap<K, V> {
2348 let mut inputs: Vec<_> = iter.into_iter().collect();
2349
2350 if inputs.is_empty() {
2351 return BTreeMap::new();
2352 }
2353
2354 // use stable sort to preserve the insertion order.
2355 inputs.sort_by(|a, b| a.0.cmp(&b.0));
2356 BTreeMap::bulk_build_from_sorted_iter(inputs, Global)
2357 }
2358}
2359
2360#[stable(feature = "rust1", since = "1.0.0")]
2361impl<K: Ord, V, A: Allocator + Clone> Extend<(K, V)> for BTreeMap<K, V, A> {
2362 #[inline]
2363 fn extend<T: IntoIterator<Item = (K, V)>>(&mut self, iter: T) {
2364 iter.into_iter().for_each(move |(k, v)| {
2365 self.insert(k, v);
2366 });
2367 }
2368
2369 #[inline]
2370 fn extend_one(&mut self, (k, v): (K, V)) {
2371 self.insert(k, v);
2372 }
2373}
2374
2375#[stable(feature = "extend_ref", since = "1.2.0")]
2376impl<'a, K: Ord + Copy, V: Copy, A: Allocator + Clone> Extend<(&'a K, &'a V)>
2377 for BTreeMap<K, V, A>
2378{
2379 fn extend<I: IntoIterator<Item = (&'a K, &'a V)>>(&mut self, iter: I) {
2380 self.extend(iter.into_iter().map(|(&key, &value)| (key, value)));
2381 }
2382
2383 #[inline]
2384 fn extend_one(&mut self, (&k, &v): (&'a K, &'a V)) {
2385 self.insert(k, v);
2386 }
2387}
2388
2389#[stable(feature = "rust1", since = "1.0.0")]
2390impl<K: Hash, V: Hash, A: Allocator + Clone> Hash for BTreeMap<K, V, A> {
2391 fn hash<H: Hasher>(&self, state: &mut H) {
2392 state.write_length_prefix(self.len());
2393 for elt in self {
2394 elt.hash(state);
2395 }
2396 }
2397}
2398
2399#[stable(feature = "rust1", since = "1.0.0")]
2400impl<K, V> Default for BTreeMap<K, V> {
2401 /// Creates an empty `BTreeMap`.
2402 fn default() -> BTreeMap<K, V> {
2403 BTreeMap::new()
2404 }
2405}
2406
2407#[stable(feature = "rust1", since = "1.0.0")]
2408impl<K: PartialEq, V: PartialEq, A: Allocator + Clone> PartialEq for BTreeMap<K, V, A> {
2409 fn eq(&self, other: &BTreeMap<K, V, A>) -> bool {
2410 self.len() == other.len() && self.iter().zip(other).all(|(a, b)| a == b)
2411 }
2412}
2413
2414#[stable(feature = "rust1", since = "1.0.0")]
2415impl<K: Eq, V: Eq, A: Allocator + Clone> Eq for BTreeMap<K, V, A> {}
2416
2417#[stable(feature = "rust1", since = "1.0.0")]
2418impl<K: PartialOrd, V: PartialOrd, A: Allocator + Clone> PartialOrd for BTreeMap<K, V, A> {
2419 #[inline]
2420 fn partial_cmp(&self, other: &BTreeMap<K, V, A>) -> Option<Ordering> {
2421 self.iter().partial_cmp(other.iter())
2422 }
2423}
2424
2425#[stable(feature = "rust1", since = "1.0.0")]
2426impl<K: Ord, V: Ord, A: Allocator + Clone> Ord for BTreeMap<K, V, A> {
2427 #[inline]
2428 fn cmp(&self, other: &BTreeMap<K, V, A>) -> Ordering {
2429 self.iter().cmp(other.iter())
2430 }
2431}
2432
2433#[stable(feature = "rust1", since = "1.0.0")]
2434impl<K: Debug, V: Debug, A: Allocator + Clone> Debug for BTreeMap<K, V, A> {
2435 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
2436 f.debug_map().entries(self.iter()).finish()
2437 }
2438}
2439
2440#[stable(feature = "rust1", since = "1.0.0")]
2441impl<K, Q: ?Sized, V, A: Allocator + Clone> Index<&Q> for BTreeMap<K, V, A>
2442where
2443 K: Borrow<Q> + Ord,
2444 Q: Ord,
2445{
2446 type Output = V;
2447
2448 /// Returns a reference to the value corresponding to the supplied key.
2449 ///
2450 /// # Panics
2451 ///
2452 /// Panics if the key is not present in the `BTreeMap`.
2453 #[inline]
2454 fn index(&self, key: &Q) -> &V {
2455 self.get(key).expect("no entry found for key")
2456 }
2457}
2458
2459#[stable(feature = "std_collections_from_array", since = "1.56.0")]
2460impl<K: Ord, V, const N: usize> From<[(K, V); N]> for BTreeMap<K, V> {
2461 /// Converts a `[(K, V); N]` into a `BTreeMap<K, V>`.
2462 ///
2463 /// If any entries in the array have equal keys,
2464 /// all but one of the corresponding values will be dropped.
2465 ///
2466 /// ```
2467 /// use std::collections::BTreeMap;
2468 ///
2469 /// let map1 = BTreeMap::from([(1, 2), (3, 4)]);
2470 /// let map2: BTreeMap<_, _> = [(1, 2), (3, 4)].into();
2471 /// assert_eq!(map1, map2);
2472 /// ```
2473 fn from(mut arr: [(K, V); N]) -> Self {
2474 if N == 0 {
2475 return BTreeMap::new();
2476 }
2477
2478 // use stable sort to preserve the insertion order.
2479 arr.sort_by(|a, b| a.0.cmp(&b.0));
2480 BTreeMap::bulk_build_from_sorted_iter(arr, Global)
2481 }
2482}
2483
2484impl<K, V, A: Allocator + Clone> BTreeMap<K, V, A> {
2485 /// Gets an iterator over the entries of the map, sorted by key.
2486 ///
2487 /// # Examples
2488 ///
2489 /// ```
2490 /// use std::collections::BTreeMap;
2491 ///
2492 /// let mut map = BTreeMap::new();
2493 /// map.insert(3, "c");
2494 /// map.insert(2, "b");
2495 /// map.insert(1, "a");
2496 ///
2497 /// for (key, value) in map.iter() {
2498 /// println!("{key}: {value}");
2499 /// }
2500 ///
2501 /// let (first_key, first_value) = map.iter().next().unwrap();
2502 /// assert_eq!((*first_key, *first_value), (1, "a"));
2503 /// ```
2504 #[stable(feature = "rust1", since = "1.0.0")]
2505 pub fn iter(&self) -> Iter<'_, K, V> {
2506 if let Some(root) = &self.root {
2507 let full_range = root.reborrow().full_range();
2508
2509 Iter { range: full_range, length: self.length }
2510 } else {
2511 Iter { range: LazyLeafRange::none(), length: 0 }
2512 }
2513 }
2514
2515 /// Gets a mutable iterator over the entries of the map, sorted by key.
2516 ///
2517 /// # Examples
2518 ///
2519 /// ```
2520 /// use std::collections::BTreeMap;
2521 ///
2522 /// let mut map = BTreeMap::from([
2523 /// ("a", 1),
2524 /// ("b", 2),
2525 /// ("c", 3),
2526 /// ]);
2527 ///
2528 /// // add 10 to the value if the key isn't "a"
2529 /// for (key, value) in map.iter_mut() {
2530 /// if key != &"a" {
2531 /// *value += 10;
2532 /// }
2533 /// }
2534 /// ```
2535 #[stable(feature = "rust1", since = "1.0.0")]
2536 pub fn iter_mut(&mut self) -> IterMut<'_, K, V> {
2537 if let Some(root) = &mut self.root {
2538 let full_range = root.borrow_valmut().full_range();
2539
2540 IterMut { range: full_range, length: self.length, _marker: PhantomData }
2541 } else {
2542 IterMut { range: LazyLeafRange::none(), length: 0, _marker: PhantomData }
2543 }
2544 }
2545
2546 /// Gets an iterator over the keys of the map, in sorted order.
2547 ///
2548 /// # Examples
2549 ///
2550 /// ```
2551 /// use std::collections::BTreeMap;
2552 ///
2553 /// let mut a = BTreeMap::new();
2554 /// a.insert(2, "b");
2555 /// a.insert(1, "a");
2556 ///
2557 /// let keys: Vec<_> = a.keys().cloned().collect();
2558 /// assert_eq!(keys, [1, 2]);
2559 /// ```
2560 #[stable(feature = "rust1", since = "1.0.0")]
2561 pub fn keys(&self) -> Keys<'_, K, V> {
2562 Keys { inner: self.iter() }
2563 }
2564
2565 /// Gets an iterator over the values of the map, in order by key.
2566 ///
2567 /// # Examples
2568 ///
2569 /// ```
2570 /// use std::collections::BTreeMap;
2571 ///
2572 /// let mut a = BTreeMap::new();
2573 /// a.insert(1, "hello");
2574 /// a.insert(2, "goodbye");
2575 ///
2576 /// let values: Vec<&str> = a.values().cloned().collect();
2577 /// assert_eq!(values, ["hello", "goodbye"]);
2578 /// ```
2579 #[stable(feature = "rust1", since = "1.0.0")]
2580 pub fn values(&self) -> Values<'_, K, V> {
2581 Values { inner: self.iter() }
2582 }
2583
2584 /// Gets a mutable iterator over the values of the map, in order by key.
2585 ///
2586 /// # Examples
2587 ///
2588 /// ```
2589 /// use std::collections::BTreeMap;
2590 ///
2591 /// let mut a = BTreeMap::new();
2592 /// a.insert(1, String::from("hello"));
2593 /// a.insert(2, String::from("goodbye"));
2594 ///
2595 /// for value in a.values_mut() {
2596 /// value.push_str("!");
2597 /// }
2598 ///
2599 /// let values: Vec<String> = a.values().cloned().collect();
2600 /// assert_eq!(values, [String::from("hello!"),
2601 /// String::from("goodbye!")]);
2602 /// ```
2603 #[stable(feature = "map_values_mut", since = "1.10.0")]
2604 pub fn values_mut(&mut self) -> ValuesMut<'_, K, V> {
2605 ValuesMut { inner: self.iter_mut() }
2606 }
2607
2608 /// Returns the number of elements in the map.
2609 ///
2610 /// # Examples
2611 ///
2612 /// ```
2613 /// use std::collections::BTreeMap;
2614 ///
2615 /// let mut a = BTreeMap::new();
2616 /// assert_eq!(a.len(), 0);
2617 /// a.insert(1, "a");
2618 /// assert_eq!(a.len(), 1);
2619 /// ```
2620 #[must_use]
2621 #[stable(feature = "rust1", since = "1.0.0")]
2622 #[rustc_const_unstable(
2623 feature = "const_btree_len",
2624 issue = "71835",
2625 implied_by = "const_btree_new"
2626 )]
2627 #[rustc_confusables("length", "size")]
2628 pub const fn len(&self) -> usize {
2629 self.length
2630 }
2631
2632 /// Returns `true` if the map contains no elements.
2633 ///
2634 /// # Examples
2635 ///
2636 /// ```
2637 /// use std::collections::BTreeMap;
2638 ///
2639 /// let mut a = BTreeMap::new();
2640 /// assert!(a.is_empty());
2641 /// a.insert(1, "a");
2642 /// assert!(!a.is_empty());
2643 /// ```
2644 #[must_use]
2645 #[stable(feature = "rust1", since = "1.0.0")]
2646 #[rustc_const_unstable(
2647 feature = "const_btree_len",
2648 issue = "71835",
2649 implied_by = "const_btree_new"
2650 )]
2651 pub const fn is_empty(&self) -> bool {
2652 self.len() == 0
2653 }
2654
2655 /// Returns a [`Cursor`] pointing at the gap before the smallest key
2656 /// greater than the given bound.
2657 ///
2658 /// Passing `Bound::Included(x)` will return a cursor pointing to the
2659 /// gap before the smallest key greater than or equal to `x`.
2660 ///
2661 /// Passing `Bound::Excluded(x)` will return a cursor pointing to the
2662 /// gap before the smallest key greater than `x`.
2663 ///
2664 /// Passing `Bound::Unbounded` will return a cursor pointing to the
2665 /// gap before the smallest key in the map.
2666 ///
2667 /// # Examples
2668 ///
2669 /// ```
2670 /// #![feature(btree_cursors)]
2671 ///
2672 /// use std::collections::BTreeMap;
2673 /// use std::ops::Bound;
2674 ///
2675 /// let map = BTreeMap::from([
2676 /// (1, "a"),
2677 /// (2, "b"),
2678 /// (3, "c"),
2679 /// (4, "d"),
2680 /// ]);
2681 ///
2682 /// let cursor = map.lower_bound(Bound::Included(&2));
2683 /// assert_eq!(cursor.peek_prev(), Some((&1, &"a")));
2684 /// assert_eq!(cursor.peek_next(), Some((&2, &"b")));
2685 ///
2686 /// let cursor = map.lower_bound(Bound::Excluded(&2));
2687 /// assert_eq!(cursor.peek_prev(), Some((&2, &"b")));
2688 /// assert_eq!(cursor.peek_next(), Some((&3, &"c")));
2689 ///
2690 /// let cursor = map.lower_bound(Bound::Unbounded);
2691 /// assert_eq!(cursor.peek_prev(), None);
2692 /// assert_eq!(cursor.peek_next(), Some((&1, &"a")));
2693 /// ```
2694 #[unstable(feature = "btree_cursors", issue = "107540")]
2695 pub fn lower_bound<Q: ?Sized>(&self, bound: Bound<&Q>) -> Cursor<'_, K, V>
2696 where
2697 K: Borrow<Q> + Ord,
2698 Q: Ord,
2699 {
2700 let root_node = match self.root.as_ref() {
2701 None => return Cursor { current: None, root: None },
2702 Some(root) => root.reborrow(),
2703 };
2704 let edge = root_node.lower_bound(SearchBound::from_range(bound));
2705 Cursor { current: Some(edge), root: self.root.as_ref() }
2706 }
2707
2708 /// Returns a [`CursorMut`] pointing at the gap before the smallest key
2709 /// greater than the given bound.
2710 ///
2711 /// Passing `Bound::Included(x)` will return a cursor pointing to the
2712 /// gap before the smallest key greater than or equal to `x`.
2713 ///
2714 /// Passing `Bound::Excluded(x)` will return a cursor pointing to the
2715 /// gap before the smallest key greater than `x`.
2716 ///
2717 /// Passing `Bound::Unbounded` will return a cursor pointing to the
2718 /// gap before the smallest key in the map.
2719 ///
2720 /// # Examples
2721 ///
2722 /// ```
2723 /// #![feature(btree_cursors)]
2724 ///
2725 /// use std::collections::BTreeMap;
2726 /// use std::ops::Bound;
2727 ///
2728 /// let mut map = BTreeMap::from([
2729 /// (1, "a"),
2730 /// (2, "b"),
2731 /// (3, "c"),
2732 /// (4, "d"),
2733 /// ]);
2734 ///
2735 /// let mut cursor = map.lower_bound_mut(Bound::Included(&2));
2736 /// assert_eq!(cursor.peek_prev(), Some((&1, &mut "a")));
2737 /// assert_eq!(cursor.peek_next(), Some((&2, &mut "b")));
2738 ///
2739 /// let mut cursor = map.lower_bound_mut(Bound::Excluded(&2));
2740 /// assert_eq!(cursor.peek_prev(), Some((&2, &mut "b")));
2741 /// assert_eq!(cursor.peek_next(), Some((&3, &mut "c")));
2742 ///
2743 /// let mut cursor = map.lower_bound_mut(Bound::Unbounded);
2744 /// assert_eq!(cursor.peek_prev(), None);
2745 /// assert_eq!(cursor.peek_next(), Some((&1, &mut "a")));
2746 /// ```
2747 #[unstable(feature = "btree_cursors", issue = "107540")]
2748 pub fn lower_bound_mut<Q: ?Sized>(&mut self, bound: Bound<&Q>) -> CursorMut<'_, K, V, A>
2749 where
2750 K: Borrow<Q> + Ord,
2751 Q: Ord,
2752 {
2753 let (root, dormant_root) = DormantMutRef::new(&mut self.root);
2754 let root_node = match root.as_mut() {
2755 None => {
2756 return CursorMut {
2757 inner: CursorMutKey {
2758 current: None,
2759 root: dormant_root,
2760 length: &mut self.length,
2761 alloc: &mut *self.alloc,
2762 },
2763 };
2764 }
2765 Some(root) => root.borrow_mut(),
2766 };
2767 let edge = root_node.lower_bound(SearchBound::from_range(bound));
2768 CursorMut {
2769 inner: CursorMutKey {
2770 current: Some(edge),
2771 root: dormant_root,
2772 length: &mut self.length,
2773 alloc: &mut *self.alloc,
2774 },
2775 }
2776 }
2777
2778 /// Returns a [`Cursor`] pointing at the gap after the greatest key
2779 /// smaller than the given bound.
2780 ///
2781 /// Passing `Bound::Included(x)` will return a cursor pointing to the
2782 /// gap after the greatest key smaller than or equal to `x`.
2783 ///
2784 /// Passing `Bound::Excluded(x)` will return a cursor pointing to the
2785 /// gap after the greatest key smaller than `x`.
2786 ///
2787 /// Passing `Bound::Unbounded` will return a cursor pointing to the
2788 /// gap after the greatest key in the map.
2789 ///
2790 /// # Examples
2791 ///
2792 /// ```
2793 /// #![feature(btree_cursors)]
2794 ///
2795 /// use std::collections::BTreeMap;
2796 /// use std::ops::Bound;
2797 ///
2798 /// let map = BTreeMap::from([
2799 /// (1, "a"),
2800 /// (2, "b"),
2801 /// (3, "c"),
2802 /// (4, "d"),
2803 /// ]);
2804 ///
2805 /// let cursor = map.upper_bound(Bound::Included(&3));
2806 /// assert_eq!(cursor.peek_prev(), Some((&3, &"c")));
2807 /// assert_eq!(cursor.peek_next(), Some((&4, &"d")));
2808 ///
2809 /// let cursor = map.upper_bound(Bound::Excluded(&3));
2810 /// assert_eq!(cursor.peek_prev(), Some((&2, &"b")));
2811 /// assert_eq!(cursor.peek_next(), Some((&3, &"c")));
2812 ///
2813 /// let cursor = map.upper_bound(Bound::Unbounded);
2814 /// assert_eq!(cursor.peek_prev(), Some((&4, &"d")));
2815 /// assert_eq!(cursor.peek_next(), None);
2816 /// ```
2817 #[unstable(feature = "btree_cursors", issue = "107540")]
2818 pub fn upper_bound<Q: ?Sized>(&self, bound: Bound<&Q>) -> Cursor<'_, K, V>
2819 where
2820 K: Borrow<Q> + Ord,
2821 Q: Ord,
2822 {
2823 let root_node = match self.root.as_ref() {
2824 None => return Cursor { current: None, root: None },
2825 Some(root) => root.reborrow(),
2826 };
2827 let edge = root_node.upper_bound(SearchBound::from_range(bound));
2828 Cursor { current: Some(edge), root: self.root.as_ref() }
2829 }
2830
2831 /// Returns a [`CursorMut`] pointing at the gap after the greatest key
2832 /// smaller than the given bound.
2833 ///
2834 /// Passing `Bound::Included(x)` will return a cursor pointing to the
2835 /// gap after the greatest key smaller than or equal to `x`.
2836 ///
2837 /// Passing `Bound::Excluded(x)` will return a cursor pointing to the
2838 /// gap after the greatest key smaller than `x`.
2839 ///
2840 /// Passing `Bound::Unbounded` will return a cursor pointing to the
2841 /// gap after the greatest key in the map.
2842 ///
2843 /// # Examples
2844 ///
2845 /// ```
2846 /// #![feature(btree_cursors)]
2847 ///
2848 /// use std::collections::BTreeMap;
2849 /// use std::ops::Bound;
2850 ///
2851 /// let mut map = BTreeMap::from([
2852 /// (1, "a"),
2853 /// (2, "b"),
2854 /// (3, "c"),
2855 /// (4, "d"),
2856 /// ]);
2857 ///
2858 /// let mut cursor = map.upper_bound_mut(Bound::Included(&3));
2859 /// assert_eq!(cursor.peek_prev(), Some((&3, &mut "c")));
2860 /// assert_eq!(cursor.peek_next(), Some((&4, &mut "d")));
2861 ///
2862 /// let mut cursor = map.upper_bound_mut(Bound::Excluded(&3));
2863 /// assert_eq!(cursor.peek_prev(), Some((&2, &mut "b")));
2864 /// assert_eq!(cursor.peek_next(), Some((&3, &mut "c")));
2865 ///
2866 /// let mut cursor = map.upper_bound_mut(Bound::Unbounded);
2867 /// assert_eq!(cursor.peek_prev(), Some((&4, &mut "d")));
2868 /// assert_eq!(cursor.peek_next(), None);
2869 /// ```
2870 #[unstable(feature = "btree_cursors", issue = "107540")]
2871 pub fn upper_bound_mut<Q: ?Sized>(&mut self, bound: Bound<&Q>) -> CursorMut<'_, K, V, A>
2872 where
2873 K: Borrow<Q> + Ord,
2874 Q: Ord,
2875 {
2876 let (root, dormant_root) = DormantMutRef::new(&mut self.root);
2877 let root_node = match root.as_mut() {
2878 None => {
2879 return CursorMut {
2880 inner: CursorMutKey {
2881 current: None,
2882 root: dormant_root,
2883 length: &mut self.length,
2884 alloc: &mut *self.alloc,
2885 },
2886 };
2887 }
2888 Some(root) => root.borrow_mut(),
2889 };
2890 let edge = root_node.upper_bound(SearchBound::from_range(bound));
2891 CursorMut {
2892 inner: CursorMutKey {
2893 current: Some(edge),
2894 root: dormant_root,
2895 length: &mut self.length,
2896 alloc: &mut *self.alloc,
2897 },
2898 }
2899 }
2900}
2901
2902/// A cursor over a `BTreeMap`.
2903///
2904/// A `Cursor` is like an iterator, except that it can freely seek back-and-forth.
2905///
2906/// Cursors always point to a gap between two elements in the map, and can
2907/// operate on the two immediately adjacent elements.
2908///
2909/// A `Cursor` is created with the [`BTreeMap::lower_bound`] and [`BTreeMap::upper_bound`] methods.
2910#[unstable(feature = "btree_cursors", issue = "107540")]
2911pub struct Cursor<'a, K: 'a, V: 'a> {
2912 // If current is None then it means the tree has not been allocated yet.
2913 current: Option<Handle<NodeRef<marker::Immut<'a>, K, V, marker::Leaf>, marker::Edge>>,
2914 root: Option<&'a node::Root<K, V>>,
2915}
2916
2917#[unstable(feature = "btree_cursors", issue = "107540")]
2918impl<K, V> Clone for Cursor<'_, K, V> {
2919 fn clone(&self) -> Self {
2920 let Cursor { current, root } = *self;
2921 Cursor { current, root }
2922 }
2923}
2924
2925#[unstable(feature = "btree_cursors", issue = "107540")]
2926impl<K: Debug, V: Debug> Debug for Cursor<'_, K, V> {
2927 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
2928 f.write_str("Cursor")
2929 }
2930}
2931
2932/// A cursor over a `BTreeMap` with editing operations.
2933///
2934/// A `Cursor` is like an iterator, except that it can freely seek back-and-forth, and can
2935/// safely mutate the map during iteration. This is because the lifetime of its yielded
2936/// references is tied to its own lifetime, instead of just the underlying map. This means
2937/// cursors cannot yield multiple elements at once.
2938///
2939/// Cursors always point to a gap between two elements in the map, and can
2940/// operate on the two immediately adjacent elements.
2941///
2942/// A `CursorMut` is created with the [`BTreeMap::lower_bound_mut`] and [`BTreeMap::upper_bound_mut`]
2943/// methods.
2944#[unstable(feature = "btree_cursors", issue = "107540")]
2945pub struct CursorMut<
2946 'a,
2947 K: 'a,
2948 V: 'a,
2949 #[unstable(feature = "allocator_api", issue = "32838")] A = Global,
2950> {
2951 inner: CursorMutKey<'a, K, V, A>,
2952}
2953
2954#[unstable(feature = "btree_cursors", issue = "107540")]
2955impl<K: Debug, V: Debug, A> Debug for CursorMut<'_, K, V, A> {
2956 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
2957 f.write_str("CursorMut")
2958 }
2959}
2960
2961/// A cursor over a `BTreeMap` with editing operations, and which allows
2962/// mutating the key of elements.
2963///
2964/// A `Cursor` is like an iterator, except that it can freely seek back-and-forth, and can
2965/// safely mutate the map during iteration. This is because the lifetime of its yielded
2966/// references is tied to its own lifetime, instead of just the underlying map. This means
2967/// cursors cannot yield multiple elements at once.
2968///
2969/// Cursors always point to a gap between two elements in the map, and can
2970/// operate on the two immediately adjacent elements.
2971///
2972/// A `CursorMutKey` is created from a [`CursorMut`] with the
2973/// [`CursorMut::with_mutable_key`] method.
2974///
2975/// # Safety
2976///
2977/// Since this cursor allows mutating keys, you must ensure that the `BTreeMap`
2978/// invariants are maintained. Specifically:
2979///
2980/// * The key of the newly inserted element must be unique in the tree.
2981/// * All keys in the tree must remain in sorted order.
2982#[unstable(feature = "btree_cursors", issue = "107540")]
2983pub struct CursorMutKey<
2984 'a,
2985 K: 'a,
2986 V: 'a,
2987 #[unstable(feature = "allocator_api", issue = "32838")] A = Global,
2988> {
2989 // If current is None then it means the tree has not been allocated yet.
2990 current: Option<Handle<NodeRef<marker::Mut<'a>, K, V, marker::Leaf>, marker::Edge>>,
2991 root: DormantMutRef<'a, Option<node::Root<K, V>>>,
2992 length: &'a mut usize,
2993 alloc: &'a mut A,
2994}
2995
2996#[unstable(feature = "btree_cursors", issue = "107540")]
2997impl<K: Debug, V: Debug, A> Debug for CursorMutKey<'_, K, V, A> {
2998 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
2999 f.write_str("CursorMutKey")
3000 }
3001}
3002
3003impl<'a, K, V> Cursor<'a, K, V> {
3004 /// Advances the cursor to the next gap, returning the key and value of the
3005 /// element that it moved over.
3006 ///
3007 /// If the cursor is already at the end of the map then `None` is returned
3008 /// and the cursor is not moved.
3009 #[unstable(feature = "btree_cursors", issue = "107540")]
3010 pub fn next(&mut self) -> Option<(&'a K, &'a V)> {
3011 let current = self.current.take()?;
3012 match current.next_kv() {
3013 Ok(kv) => {
3014 let result = kv.into_kv();
3015 self.current = Some(kv.next_leaf_edge());
3016 Some(result)
3017 }
3018 Err(root) => {
3019 self.current = Some(root.last_leaf_edge());
3020 None
3021 }
3022 }
3023 }
3024
3025 /// Advances the cursor to the previous gap, returning the key and value of
3026 /// the element that it moved over.
3027 ///
3028 /// If the cursor is already at the start of the map then `None` is returned
3029 /// and the cursor is not moved.
3030 #[unstable(feature = "btree_cursors", issue = "107540")]
3031 pub fn prev(&mut self) -> Option<(&'a K, &'a V)> {
3032 let current = self.current.take()?;
3033 match current.next_back_kv() {
3034 Ok(kv) => {
3035 let result = kv.into_kv();
3036 self.current = Some(kv.next_back_leaf_edge());
3037 Some(result)
3038 }
3039 Err(root) => {
3040 self.current = Some(root.first_leaf_edge());
3041 None
3042 }
3043 }
3044 }
3045
3046 /// Returns a reference to the key and value of the next element without
3047 /// moving the cursor.
3048 ///
3049 /// If the cursor is at the end of the map then `None` is returned.
3050 #[unstable(feature = "btree_cursors", issue = "107540")]
3051 pub fn peek_next(&self) -> Option<(&'a K, &'a V)> {
3052 self.clone().next()
3053 }
3054
3055 /// Returns a reference to the key and value of the previous element
3056 /// without moving the cursor.
3057 ///
3058 /// If the cursor is at the start of the map then `None` is returned.
3059 #[unstable(feature = "btree_cursors", issue = "107540")]
3060 pub fn peek_prev(&self) -> Option<(&'a K, &'a V)> {
3061 self.clone().prev()
3062 }
3063}
3064
3065impl<'a, K, V, A> CursorMut<'a, K, V, A> {
3066 /// Advances the cursor to the next gap, returning the key and value of the
3067 /// element that it moved over.
3068 ///
3069 /// If the cursor is already at the end of the map then `None` is returned
3070 /// and the cursor is not moved.
3071 #[unstable(feature = "btree_cursors", issue = "107540")]
3072 pub fn next(&mut self) -> Option<(&K, &mut V)> {
3073 let (k, v) = self.inner.next()?;
3074 Some((&*k, v))
3075 }
3076
3077 /// Advances the cursor to the previous gap, returning the key and value of
3078 /// the element that it moved over.
3079 ///
3080 /// If the cursor is already at the start of the map then `None` is returned
3081 /// and the cursor is not moved.
3082 #[unstable(feature = "btree_cursors", issue = "107540")]
3083 pub fn prev(&mut self) -> Option<(&K, &mut V)> {
3084 let (k, v) = self.inner.prev()?;
3085 Some((&*k, v))
3086 }
3087
3088 /// Returns a reference to the key and value of the next element without
3089 /// moving the cursor.
3090 ///
3091 /// If the cursor is at the end of the map then `None` is returned.
3092 #[unstable(feature = "btree_cursors", issue = "107540")]
3093 pub fn peek_next(&mut self) -> Option<(&K, &mut V)> {
3094 let (k, v) = self.inner.peek_next()?;
3095 Some((&*k, v))
3096 }
3097
3098 /// Returns a reference to the key and value of the previous element
3099 /// without moving the cursor.
3100 ///
3101 /// If the cursor is at the start of the map then `None` is returned.
3102 #[unstable(feature = "btree_cursors", issue = "107540")]
3103 pub fn peek_prev(&mut self) -> Option<(&K, &mut V)> {
3104 let (k, v) = self.inner.peek_prev()?;
3105 Some((&*k, v))
3106 }
3107
3108 /// Returns a read-only cursor pointing to the same location as the
3109 /// `CursorMut`.
3110 ///
3111 /// The lifetime of the returned `Cursor` is bound to that of the
3112 /// `CursorMut`, which means it cannot outlive the `CursorMut` and that the
3113 /// `CursorMut` is frozen for the lifetime of the `Cursor`.
3114 #[unstable(feature = "btree_cursors", issue = "107540")]
3115 pub fn as_cursor(&self) -> Cursor<'_, K, V> {
3116 self.inner.as_cursor()
3117 }
3118
3119 /// Converts the cursor into a [`CursorMutKey`], which allows mutating
3120 /// the key of elements in the tree.
3121 ///
3122 /// # Safety
3123 ///
3124 /// Since this cursor allows mutating keys, you must ensure that the `BTreeMap`
3125 /// invariants are maintained. Specifically:
3126 ///
3127 /// * The key of the newly inserted element must be unique in the tree.
3128 /// * All keys in the tree must remain in sorted order.
3129 #[unstable(feature = "btree_cursors", issue = "107540")]
3130 pub unsafe fn with_mutable_key(self) -> CursorMutKey<'a, K, V, A> {
3131 self.inner
3132 }
3133}
3134
3135impl<'a, K, V, A> CursorMutKey<'a, K, V, A> {
3136 /// Advances the cursor to the next gap, returning the key and value of the
3137 /// element that it moved over.
3138 ///
3139 /// If the cursor is already at the end of the map then `None` is returned
3140 /// and the cursor is not moved.
3141 #[unstable(feature = "btree_cursors", issue = "107540")]
3142 pub fn next(&mut self) -> Option<(&mut K, &mut V)> {
3143 let current = self.current.take()?;
3144 match current.next_kv() {
3145 Ok(mut kv) => {
3146 // SAFETY: The key/value pointers remain valid even after the
3147 // cursor is moved forward. The lifetimes then prevent any
3148 // further access to the cursor.
3149 let (k, v) = unsafe { kv.reborrow_mut().into_kv_mut() };
3150 let (k, v) = (k as *mut _, v as *mut _);
3151 self.current = Some(kv.next_leaf_edge());
3152 Some(unsafe { (&mut *k, &mut *v) })
3153 }
3154 Err(root) => {
3155 self.current = Some(root.last_leaf_edge());
3156 None
3157 }
3158 }
3159 }
3160
3161 /// Advances the cursor to the previous gap, returning the key and value of
3162 /// the element that it moved over.
3163 ///
3164 /// If the cursor is already at the start of the map then `None` is returned
3165 /// and the cursor is not moved.
3166 #[unstable(feature = "btree_cursors", issue = "107540")]
3167 pub fn prev(&mut self) -> Option<(&mut K, &mut V)> {
3168 let current = self.current.take()?;
3169 match current.next_back_kv() {
3170 Ok(mut kv) => {
3171 // SAFETY: The key/value pointers remain valid even after the
3172 // cursor is moved forward. The lifetimes then prevent any
3173 // further access to the cursor.
3174 let (k, v) = unsafe { kv.reborrow_mut().into_kv_mut() };
3175 let (k, v) = (k as *mut _, v as *mut _);
3176 self.current = Some(kv.next_back_leaf_edge());
3177 Some(unsafe { (&mut *k, &mut *v) })
3178 }
3179 Err(root) => {
3180 self.current = Some(root.first_leaf_edge());
3181 None
3182 }
3183 }
3184 }
3185
3186 /// Returns a reference to the key and value of the next element without
3187 /// moving the cursor.
3188 ///
3189 /// If the cursor is at the end of the map then `None` is returned.
3190 #[unstable(feature = "btree_cursors", issue = "107540")]
3191 pub fn peek_next(&mut self) -> Option<(&mut K, &mut V)> {
3192 let current = self.current.as_mut()?;
3193 // SAFETY: We're not using this to mutate the tree.
3194 let kv = unsafe { current.reborrow_mut() }.next_kv().ok()?.into_kv_mut();
3195 Some(kv)
3196 }
3197
3198 /// Returns a reference to the key and value of the previous element
3199 /// without moving the cursor.
3200 ///
3201 /// If the cursor is at the start of the map then `None` is returned.
3202 #[unstable(feature = "btree_cursors", issue = "107540")]
3203 pub fn peek_prev(&mut self) -> Option<(&mut K, &mut V)> {
3204 let current = self.current.as_mut()?;
3205 // SAFETY: We're not using this to mutate the tree.
3206 let kv = unsafe { current.reborrow_mut() }.next_back_kv().ok()?.into_kv_mut();
3207 Some(kv)
3208 }
3209
3210 /// Returns a read-only cursor pointing to the same location as the
3211 /// `CursorMutKey`.
3212 ///
3213 /// The lifetime of the returned `Cursor` is bound to that of the
3214 /// `CursorMutKey`, which means it cannot outlive the `CursorMutKey` and that the
3215 /// `CursorMutKey` is frozen for the lifetime of the `Cursor`.
3216 #[unstable(feature = "btree_cursors", issue = "107540")]
3217 pub fn as_cursor(&self) -> Cursor<'_, K, V> {
3218 Cursor {
3219 // SAFETY: The tree is immutable while the cursor exists.
3220 root: unsafe { self.root.reborrow_shared().as_ref() },
3221 current: self.current.as_ref().map(|current| current.reborrow()),
3222 }
3223 }
3224}
3225
3226// Now the tree editing operations
3227impl<'a, K: Ord, V, A: Allocator + Clone> CursorMutKey<'a, K, V, A> {
3228 /// Inserts a new key-value pair into the map in the gap that the
3229 /// cursor is currently pointing to.
3230 ///
3231 /// After the insertion the cursor will be pointing at the gap before the
3232 /// newly inserted element.
3233 ///
3234 /// # Safety
3235 ///
3236 /// You must ensure that the `BTreeMap` invariants are maintained.
3237 /// Specifically:
3238 ///
3239 /// * The key of the newly inserted element must be unique in the tree.
3240 /// * All keys in the tree must remain in sorted order.
3241 #[unstable(feature = "btree_cursors", issue = "107540")]
3242 pub unsafe fn insert_after_unchecked(&mut self, key: K, value: V) {
3243 let edge = match self.current.take() {
3244 None => {
3245 // Tree is empty, allocate a new root.
3246 // SAFETY: We have no other reference to the tree.
3247 let root = unsafe { self.root.reborrow() };
3248 debug_assert!(root.is_none());
3249 let mut node = NodeRef::new_leaf(self.alloc.clone());
3250 // SAFETY: We don't touch the root while the handle is alive.
3251 let handle = unsafe { node.borrow_mut().push_with_handle(key, value) };
3252 *root = Some(node.forget_type());
3253 *self.length += 1;
3254 self.current = Some(handle.left_edge());
3255 return;
3256 }
3257 Some(current) => current,
3258 };
3259
3260 let handle = edge.insert_recursing(key, value, self.alloc.clone(), |ins| {
3261 drop(ins.left);
3262 // SAFETY: The handle to the newly inserted value is always on a
3263 // leaf node, so adding a new root node doesn't invalidate it.
3264 let root = unsafe { self.root.reborrow().as_mut().unwrap() };
3265 root.push_internal_level(self.alloc.clone()).push(ins.kv.0, ins.kv.1, ins.right)
3266 });
3267 self.current = Some(handle.left_edge());
3268 *self.length += 1;
3269 }
3270
3271 /// Inserts a new key-value pair into the map in the gap that the
3272 /// cursor is currently pointing to.
3273 ///
3274 /// After the insertion the cursor will be pointing at the gap after the
3275 /// newly inserted element.
3276 ///
3277 /// # Safety
3278 ///
3279 /// You must ensure that the `BTreeMap` invariants are maintained.
3280 /// Specifically:
3281 ///
3282 /// * The key of the newly inserted element must be unique in the tree.
3283 /// * All keys in the tree must remain in sorted order.
3284 #[unstable(feature = "btree_cursors", issue = "107540")]
3285 pub unsafe fn insert_before_unchecked(&mut self, key: K, value: V) {
3286 let edge = match self.current.take() {
3287 None => {
3288 // SAFETY: We have no other reference to the tree.
3289 match unsafe { self.root.reborrow() } {
3290 root @ None => {
3291 // Tree is empty, allocate a new root.
3292 let mut node = NodeRef::new_leaf(self.alloc.clone());
3293 // SAFETY: We don't touch the root while the handle is alive.
3294 let handle = unsafe { node.borrow_mut().push_with_handle(key, value) };
3295 *root = Some(node.forget_type());
3296 *self.length += 1;
3297 self.current = Some(handle.right_edge());
3298 return;
3299 }
3300 Some(root) => root.borrow_mut().last_leaf_edge(),
3301 }
3302 }
3303 Some(current) => current,
3304 };
3305
3306 let handle = edge.insert_recursing(key, value, self.alloc.clone(), |ins| {
3307 drop(ins.left);
3308 // SAFETY: The handle to the newly inserted value is always on a
3309 // leaf node, so adding a new root node doesn't invalidate it.
3310 let root = unsafe { self.root.reborrow().as_mut().unwrap() };
3311 root.push_internal_level(self.alloc.clone()).push(ins.kv.0, ins.kv.1, ins.right)
3312 });
3313 self.current = Some(handle.right_edge());
3314 *self.length += 1;
3315 }
3316
3317 /// Inserts a new key-value pair into the map in the gap that the
3318 /// cursor is currently pointing to.
3319 ///
3320 /// After the insertion the cursor will be pointing at the gap before the
3321 /// newly inserted element.
3322 ///
3323 /// If the inserted key is not greater than the key before the cursor
3324 /// (if any), or if it not less than the key after the cursor (if any),
3325 /// then an [`UnorderedKeyError`] is returned since this would
3326 /// invalidate the [`Ord`] invariant between the keys of the map.
3327 #[unstable(feature = "btree_cursors", issue = "107540")]
3328 pub fn insert_after(&mut self, key: K, value: V) -> Result<(), UnorderedKeyError> {
3329 if let Some((prev, _)) = self.peek_prev() {
3330 if &key <= prev {
3331 return Err(UnorderedKeyError {});
3332 }
3333 }
3334 if let Some((next, _)) = self.peek_next() {
3335 if &key >= next {
3336 return Err(UnorderedKeyError {});
3337 }
3338 }
3339 unsafe {
3340 self.insert_after_unchecked(key, value);
3341 }
3342 Ok(())
3343 }
3344
3345 /// Inserts a new key-value pair into the map in the gap that the
3346 /// cursor is currently pointing to.
3347 ///
3348 /// After the insertion the cursor will be pointing at the gap after the
3349 /// newly inserted element.
3350 ///
3351 /// If the inserted key is not greater than the key before the cursor
3352 /// (if any), or if it not less than the key after the cursor (if any),
3353 /// then an [`UnorderedKeyError`] is returned since this would
3354 /// invalidate the [`Ord`] invariant between the keys of the map.
3355 #[unstable(feature = "btree_cursors", issue = "107540")]
3356 pub fn insert_before(&mut self, key: K, value: V) -> Result<(), UnorderedKeyError> {
3357 if let Some((prev, _)) = self.peek_prev() {
3358 if &key <= prev {
3359 return Err(UnorderedKeyError {});
3360 }
3361 }
3362 if let Some((next, _)) = self.peek_next() {
3363 if &key >= next {
3364 return Err(UnorderedKeyError {});
3365 }
3366 }
3367 unsafe {
3368 self.insert_before_unchecked(key, value);
3369 }
3370 Ok(())
3371 }
3372
3373 /// Removes the next element from the `BTreeMap`.
3374 ///
3375 /// The element that was removed is returned. The cursor position is
3376 /// unchanged (before the removed element).
3377 #[unstable(feature = "btree_cursors", issue = "107540")]
3378 pub fn remove_next(&mut self) -> Option<(K, V)> {
3379 let current = self.current.take()?;
3380 if current.reborrow().next_kv().is_err() {
3381 self.current = Some(current);
3382 return None;
3383 }
3384 let mut emptied_internal_root = false;
3385 let (kv, pos) = current
3386 .next_kv()
3387 // This should be unwrap(), but that doesn't work because NodeRef
3388 // doesn't implement Debug. The condition is checked above.
3389 .ok()?
3390 .remove_kv_tracking(|| emptied_internal_root = true, self.alloc.clone());
3391 self.current = Some(pos);
3392 *self.length -= 1;
3393 if emptied_internal_root {
3394 // SAFETY: This is safe since current does not point within the now
3395 // empty root node.
3396 let root = unsafe { self.root.reborrow().as_mut().unwrap() };
3397 root.pop_internal_level(self.alloc.clone());
3398 }
3399 Some(kv)
3400 }
3401
3402 /// Removes the preceding element from the `BTreeMap`.
3403 ///
3404 /// The element that was removed is returned. The cursor position is
3405 /// unchanged (after the removed element).
3406 #[unstable(feature = "btree_cursors", issue = "107540")]
3407 pub fn remove_prev(&mut self) -> Option<(K, V)> {
3408 let current = self.current.take()?;
3409 if current.reborrow().next_back_kv().is_err() {
3410 self.current = Some(current);
3411 return None;
3412 }
3413 let mut emptied_internal_root = false;
3414 let (kv, pos) = current
3415 .next_back_kv()
3416 // This should be unwrap(), but that doesn't work because NodeRef
3417 // doesn't implement Debug. The condition is checked above.
3418 .ok()?
3419 .remove_kv_tracking(|| emptied_internal_root = true, self.alloc.clone());
3420 self.current = Some(pos);
3421 *self.length -= 1;
3422 if emptied_internal_root {
3423 // SAFETY: This is safe since current does not point within the now
3424 // empty root node.
3425 let root = unsafe { self.root.reborrow().as_mut().unwrap() };
3426 root.pop_internal_level(self.alloc.clone());
3427 }
3428 Some(kv)
3429 }
3430}
3431
3432impl<'a, K: Ord, V, A: Allocator + Clone> CursorMut<'a, K, V, A> {
3433 /// Inserts a new key-value pair into the map in the gap that the
3434 /// cursor is currently pointing to.
3435 ///
3436 /// After the insertion the cursor will be pointing at the gap after the
3437 /// newly inserted element.
3438 ///
3439 /// # Safety
3440 ///
3441 /// You must ensure that the `BTreeMap` invariants are maintained.
3442 /// Specifically:
3443 ///
3444 /// * The key of the newly inserted element must be unique in the tree.
3445 /// * All keys in the tree must remain in sorted order.
3446 #[unstable(feature = "btree_cursors", issue = "107540")]
3447 pub unsafe fn insert_after_unchecked(&mut self, key: K, value: V) {
3448 unsafe { self.inner.insert_after_unchecked(key, value) }
3449 }
3450
3451 /// Inserts a new key-value pair into the map in the gap that the
3452 /// cursor is currently pointing to.
3453 ///
3454 /// After the insertion the cursor will be pointing at the gap after the
3455 /// newly inserted element.
3456 ///
3457 /// # Safety
3458 ///
3459 /// You must ensure that the `BTreeMap` invariants are maintained.
3460 /// Specifically:
3461 ///
3462 /// * The key of the newly inserted element must be unique in the tree.
3463 /// * All keys in the tree must remain in sorted order.
3464 #[unstable(feature = "btree_cursors", issue = "107540")]
3465 pub unsafe fn insert_before_unchecked(&mut self, key: K, value: V) {
3466 unsafe { self.inner.insert_before_unchecked(key, value) }
3467 }
3468
3469 /// Inserts a new key-value pair into the map in the gap that the
3470 /// cursor is currently pointing to.
3471 ///
3472 /// After the insertion the cursor will be pointing at the gap before the
3473 /// newly inserted element.
3474 ///
3475 /// If the inserted key is not greater than the key before the cursor
3476 /// (if any), or if it not less than the key after the cursor (if any),
3477 /// then an [`UnorderedKeyError`] is returned since this would
3478 /// invalidate the [`Ord`] invariant between the keys of the map.
3479 #[unstable(feature = "btree_cursors", issue = "107540")]
3480 pub fn insert_after(&mut self, key: K, value: V) -> Result<(), UnorderedKeyError> {
3481 self.inner.insert_after(key, value)
3482 }
3483
3484 /// Inserts a new key-value pair into the map in the gap that the
3485 /// cursor is currently pointing to.
3486 ///
3487 /// After the insertion the cursor will be pointing at the gap after the
3488 /// newly inserted element.
3489 ///
3490 /// If the inserted key is not greater than the key before the cursor
3491 /// (if any), or if it not less than the key after the cursor (if any),
3492 /// then an [`UnorderedKeyError`] is returned since this would
3493 /// invalidate the [`Ord`] invariant between the keys of the map.
3494 #[unstable(feature = "btree_cursors", issue = "107540")]
3495 pub fn insert_before(&mut self, key: K, value: V) -> Result<(), UnorderedKeyError> {
3496 self.inner.insert_before(key, value)
3497 }
3498
3499 /// Removes the next element from the `BTreeMap`.
3500 ///
3501 /// The element that was removed is returned. The cursor position is
3502 /// unchanged (before the removed element).
3503 #[unstable(feature = "btree_cursors", issue = "107540")]
3504 pub fn remove_next(&mut self) -> Option<(K, V)> {
3505 self.inner.remove_next()
3506 }
3507
3508 /// Removes the preceding element from the `BTreeMap`.
3509 ///
3510 /// The element that was removed is returned. The cursor position is
3511 /// unchanged (after the removed element).
3512 #[unstable(feature = "btree_cursors", issue = "107540")]
3513 pub fn remove_prev(&mut self) -> Option<(K, V)> {
3514 self.inner.remove_prev()
3515 }
3516}
3517
3518/// Error type returned by [`CursorMut::insert_before`] and
3519/// [`CursorMut::insert_after`] if the key being inserted is not properly
3520/// ordered with regards to adjacent keys.
3521#[derive(Clone, PartialEq, Eq, Debug)]
3522#[unstable(feature = "btree_cursors", issue = "107540")]
3523pub struct UnorderedKeyError {}
3524
3525#[unstable(feature = "btree_cursors", issue = "107540")]
3526impl fmt::Display for UnorderedKeyError {
3527 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
3528 write!(f, "key is not properly ordered relative to neighbors")
3529 }
3530}
3531
3532#[unstable(feature = "btree_cursors", issue = "107540")]
3533impl Error for UnorderedKeyError {}
3534
3535#[cfg(test)]
3536mod tests;